6.
Park C, Lee B
. Real-time estimation of respiratory rate from a photoplethysmogram using an adaptive lattice notch filter. Biomed Eng Online. 2014; 13:170.
PMC: 4277838.
DOI: 10.1186/1475-925X-13-170.
View
7.
Dash S, Shelley K, Silverman D, Chon K
. Estimation of respiratory rate from ECG, photoplethysmogram, and piezoelectric pulse transducer signals: a comparative study of time-frequency methods. IEEE Trans Biomed Eng. 2010; 57(5):1099-107.
DOI: 10.1109/TBME.2009.2038226.
View
8.
Hartmann V, Liu H, Chen F, Hong W, Hughes S, Zheng D
. Toward Accurate Extraction of Respiratory Frequency From the Photoplethysmogram: Effect of Measurement Site. Front Physiol. 2019; 10:732.
PMC: 6611405.
DOI: 10.3389/fphys.2019.00732.
View
9.
Nicolo A, Massaroni C, Schena E, Sacchetti M
. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise. Sensors (Basel). 2020; 20(21).
PMC: 7665156.
DOI: 10.3390/s20216396.
View
10.
Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R
. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23):E215-20.
DOI: 10.1161/01.cir.101.23.e215.
View
11.
Karlen W, Raman S, Ansermino J, Dumont G
. Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Trans Biomed Eng. 2013; 60(7):1946-53.
DOI: 10.1109/TBME.2013.2246160.
View
12.
Stankoski S, Kiprijanovska I, Mavridou I, Nduka C, Gjoreski H, Gjoreski M
. Breathing Rate Estimation from Head-Worn Photoplethysmography Sensor Data Using Machine Learning. Sensors (Basel). 2022; 22(6).
PMC: 8951087.
DOI: 10.3390/s22062079.
View
13.
Iqbal T, Elahi A, Ganly S, Wijns W, Shahzad A
. Photoplethysmography-Based Respiratory Rate Estimation Algorithm for Health Monitoring Applications. J Med Biol Eng. 2022; 42(2):242-252.
PMC: 9056464.
DOI: 10.1007/s40846-022-00700-z.
View
14.
Ravichandran V, Murugesan B, Balakarthikeyan V, Ram K, Preejith S, Joseph J
. RespNet: A deep learning model for extraction of respiration from photoplethysmogram. Annu Int Conf IEEE Eng Med Biol Soc. 2020; 2019:5556-5559.
DOI: 10.1109/EMBC.2019.8856301.
View
15.
Charlton P, Bonnici T, Tarassenko L, Alastruey J, Clifton D, Beale R
. Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants. Physiol Meas. 2017; 38(5):669-690.
DOI: 10.1088/1361-6579/aa670e.
View
16.
Chon K, Dash S, Ju K
. Estimation of respiratory rate from photoplethysmogram data using time-frequency spectral estimation. IEEE Trans Biomed Eng. 2009; 56(8):2054-63.
DOI: 10.1109/TBME.2009.2019766.
View
17.
Khreis S, Ge D, Rahman H, Carrault G
. Breathing Rate Estimation Using Kalman Smoother With Electrocardiogram and Photoplethysmogram. IEEE Trans Biomed Eng. 2019; 67(3):893-904.
DOI: 10.1109/TBME.2019.2923448.
View
18.
Pimentel M, Johnson A, Charlton P, Birrenkott D, Watkinson P, Tarassenko L
. Toward a Robust Estimation of Respiratory Rate From Pulse Oximeters. IEEE Trans Biomed Eng. 2016; 64(8):1914-1923.
PMC: 6051482.
DOI: 10.1109/TBME.2016.2613124.
View
19.
Charlton P, Celka P, Farukh B, Chowienczyk P, Alastruey J
. Assessing mental stress from the photoplethysmogram: a numerical study. Physiol Meas. 2018; 39(5):054001.
PMC: 5964362.
DOI: 10.1088/1361-6579/aabe6a.
View
20.
Baker S, Xiang W, Atkinson I
. Determining respiratory rate from photoplethysmogram and electrocardiogram signals using respiratory quality indices and neural networks. PLoS One. 2021; 16(4):e0249843.
PMC: 8031461.
DOI: 10.1371/journal.pone.0249843.
View