» Articles » PMID: 38319563

Deep Learning-based PET Image Denoising and Reconstruction: a Review

Overview
Date 2024 Feb 6
PMID 38319563
Authors
Affiliations
Soon will be listed here.
Abstract

This review focuses on positron emission tomography (PET) imaging algorithms and traces the evolution of PET image reconstruction methods. First, we provide an overview of conventional PET image reconstruction methods from filtered backprojection through to recent iterative PET image reconstruction algorithms, and then review deep learning methods for PET data up to the latest innovations within three main categories. The first category involves post-processing methods for PET image denoising. The second category comprises direct image reconstruction methods that learn mappings from sinograms to the reconstructed images in an end-to-end manner. The third category comprises iterative reconstruction methods that combine conventional iterative image reconstruction with neural-network enhancement. We discuss future perspectives on PET imaging and deep learning technology.

Citing Articles

Arrival time mapping with O-gas PET for cerebrovascular steno-occlusive diseases: a comparative study with CT perfusion.

Ibaraki M, Shinohara Y, Watanabe A, Sato K, Ohmura T, Yamamoto H EJNMMI Res. 2025; 15(1):20.

PMID: 40055252 PMC: 11889313. DOI: 10.1186/s13550-025-01209-7.


Deep learning image enhancement algorithms in PET/CT imaging: a phantom and sarcoma patient radiomic evaluation.

Bonney L, Kalisvaart G, van Velden F, Bradley K, Hassan A, Grootjans W Eur J Nucl Med Mol Imaging. 2025; .

PMID: 40014074 DOI: 10.1007/s00259-025-07149-7.


Fundamental study on improving the quality of X-ray fluorescence computed tomography images by applying deep image prior to projection images as a pre-denoising method.

Kusakari S, Sato K, Tsushima Y, Matsuoka M, Sasaya T, Sunaguchi N Int J Comput Assist Radiol Surg. 2024; .

PMID: 39739291 DOI: 10.1007/s11548-024-03307-8.


The impact of long axial field of view (LAFOV) PET on oncologic imaging.

Cook G, Alberts I, Wagner T, Fischer B, Nazir M, Lilburn D Eur J Radiol. 2024; 183:111873.

PMID: 39647272 PMC: 11904125. DOI: 10.1016/j.ejrad.2024.111873.


Whole-body PET image denoising for reduced acquisition time.

Kruzhilov I, Kudin S, Vetoshkin L, Sokolova E, Kokh V Front Med (Lausanne). 2024; 11:1415058.

PMID: 39403284 PMC: 11471667. DOI: 10.3389/fmed.2024.1415058.


References
1.
Obi T, Matej S, Lewitt R, Herman G . 2.5-D simultaneous multislice reconstruction by series expansion methods from Fourier-rebinned PET data. IEEE Trans Med Imaging. 2000; 19(5):474-84. DOI: 10.1109/42.870257. View

2.
Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush D . 3D Auto-Context-Based Locality Adaptive Multi-Modality GANs for PET Synthesis. IEEE Trans Med Imaging. 2018; 38(6):1328-1339. PMC: 6541547. DOI: 10.1109/TMI.2018.2884053. View

3.
Gong K, Kim K, Cui J, Wu D, Li Q . The Evolution of Image Reconstruction in PET: From Filtered Back-Projection to Artificial Intelligence. PET Clin. 2021; 16(4):533-542. DOI: 10.1016/j.cpet.2021.06.004. View

4.
Hashimoto F, Ote K . ReconU-Net: a direct PET image reconstruction using U-Net architecture with back projection-induced skip connection. Phys Med Biol. 2024; 69(10). DOI: 10.1088/1361-6560/ad40f6. View

5.
Sano A, Nishio T, Masuda T, Karasawa K . Denoising PET images for proton therapy using a residual U-net. Biomed Phys Eng Express. 2021; 7(2). DOI: 10.1088/2057-1976/abe33c. View