» Articles » PMID: 38272895

A Multiplexed, Confinable CRISPR/Cas9 Gene Drive Can Propagate in Caged Aedes Aegypti Populations

Abstract

Aedes aegypti is the main vector of several major pathogens including dengue, Zika and chikungunya viruses. Classical mosquito control strategies utilizing insecticides are threatened by rising resistance. This has stimulated interest in new genetic systems such as gene drivesHere, we test the regulatory sequences from the Ae. aegypti benign gonial cell neoplasm (bgcn) homolog to express Cas9 and a separate multiplexing sgRNA-expressing cassette inserted into the Ae. aegypti kynurenine 3-monooxygenase (kmo) gene. When combined, these two elements provide highly effective germline cutting at the kmo locus and act as a gene drive. Our target genetic element drives through a cage trial population such that carrier frequency of the element increases from 50% to up to 89% of the population despite significant fitness costs to kmo insertions. Deep sequencing suggests that the multiplexing design could mitigate resistance allele formation in our gene drive system.

Citing Articles

CRISPR/Cas9 Genome Editing in the Diamondback Moth: Current Progress, Challenges, and Prospects.

Asad M, Chang Y, Liao J, Yang G Int J Mol Sci. 2025; 26(4).

PMID: 40003981 PMC: 11855872. DOI: 10.3390/ijms26041515.


Challenges in developing a split drive targeting dsx for the genetic control of the invasive malaria vector Anopheles stephensi.

Larrosa-Godall M, Ang J, Leftwich P, Gonzalez E, Shackleford L, Nevard K Parasit Vectors. 2025; 18(1):46.

PMID: 39920845 PMC: 11806748. DOI: 10.1186/s13071-025-06688-0.


Gene drive-based population suppression in the malaria vector Anopheles stephensi.

Xu X, Chen J, Wang Y, Liu Y, Zhang Y, Yang J Nat Commun. 2025; 16(1):1007.

PMID: 39856077 PMC: 11760374. DOI: 10.1038/s41467-025-56290-2.


Genomic basis of schistosome resistance in a molluscan vector of human schistosomiasis.

Zhang S, Yan G, Lekired A, Zhong D iScience. 2025; 28(1):111520.

PMID: 39758819 PMC: 11699755. DOI: 10.1016/j.isci.2024.111520.


How population control of pests is modulated by density dependence: The perspective of genetic biocontrol.

Butler C, Lloyd A bioRxiv. 2024; .

PMID: 39605380 PMC: 11601221. DOI: 10.1101/2024.11.08.622719.


References
1.
Li M, Yang T, Kandul N, Bui M, Gamez S, Raban R . Development of a confinable gene drive system in the human disease vector . Elife. 2020; 9. PMC: 6974361. DOI: 10.7554/eLife.51701. View

2.
Anderson M, Purcell J, Verkuijl S, Norman V, Leftwich P, Harvey-Samuel T . Expanding the CRISPR Toolbox in Culicine Mosquitoes: Validation of Pol III Promoters. ACS Synth Biol. 2020; 9(3):678-681. PMC: 7093051. DOI: 10.1021/acssynbio.9b00436. View

3.
Kandul N, Liu J, Buchman A, Gantz V, Bier E, Akbari O . Assessment of a Split Homing Based Gene Drive for Efficient Knockout of Multiple Genes. G3 (Bethesda). 2019; 10(2):827-837. PMC: 7003086. DOI: 10.1534/g3.119.400985. View

4.
Champer J, Yang E, Lee E, Liu J, Clark A, Messer P . A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. Proc Natl Acad Sci U S A. 2020; 117(39):24377-24383. PMC: 7533649. DOI: 10.1073/pnas.2004373117. View

5.
Ang J, Nevard K, Ireland R, Purusothaman D, Verkuijl S, Shackleford L . Considerations for homology-based DNA repair in mosquitoes: Impact of sequence heterology and donor template source. PLoS Genet. 2022; 18(2):e1010060. PMC: 8893643. DOI: 10.1371/journal.pgen.1010060. View