» Articles » PMID: 38262924

Deep Learning Enables Automatic Correction of Experimental HDX-MS Data with Applications in Protein Modeling

Overview
Specialty Chemistry
Date 2024 Jan 23
PMID 38262924
Authors
Affiliations
Soon will be listed here.
Abstract

Observed mass shifts associated with deuterium incorporation in hydrogen-deuterium exchange mass spectrometry (HDX-MS) frequently deviate from the initial signals due to back and forward exchange. In typical HDX-MS experiments, the impact of these disparities on data interpretation is generally low because relative and not absolute mass changes are investigated. However, for more advanced data processing including optimization, experimental error correction is imperative for accurate results. Here the potential for automatic HDX-MS data correction using models generated by deep neural networks is demonstrated. A multilayer perceptron (MLP) is used to learn a mapping between uncorrected HDX-MS data and data with mass shifts corrected for back and forward exchange. The model is rigorously tested at various levels including peptide level mass changes, residue level protection factors following optimization, and ability to correctly identify native protein folds using HDX-MS guided protein modeling. AI is shown to demonstrate considerable potential for amending HDX-MS data and improving fidelity across all levels. With access to big data, online tools may eventually be able to predict corrected mass shifts in HDX-MS profiles. This should improve throughput in workflows that require the reporting of real mass changes as well as allow retrospective correction of historic profiles to facilitate new discoveries with these data.

Citing Articles

Protein Microarrays for High Throughput Hydrogen/Deuterium Exchange Monitored by FTIR Imaging.

De Meutter J, Goormaghtigh E Int J Mol Sci. 2024; 25(18).

PMID: 39337477 PMC: 11432650. DOI: 10.3390/ijms25189989.

References
1.
Peterle D, Wales T, Engen J . Simple and Fast Maximally Deuterated Control (maxD) Preparation for Hydrogen-Deuterium Exchange Mass Spectrometry Experiments. Anal Chem. 2022; 94(28):10142-10150. PMC: 9335555. DOI: 10.1021/acs.analchem.2c01446. View

2.
Canet D, Last A, Tito P, Sunde M, Spencer A, Archer D . Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nat Struct Biol. 2002; 9(4):308-15. DOI: 10.1038/nsb768. View

3.
Sheff J, Rey M, Schriemer D . Peptide-column interactions and their influence on back exchange rates in hydrogen/deuterium exchange-MS. J Am Soc Mass Spectrom. 2013; 24(7):1006-15. DOI: 10.1007/s13361-013-0639-4. View

4.
Deng H, Jia Y, Zhang Y . 3DRobot: automated generation of diverse and well-packed protein structure decoys. Bioinformatics. 2015; 32(3):378-87. PMC: 5006309. DOI: 10.1093/bioinformatics/btv601. View

5.
Fukushima K . Cognitron: a self-organizing multilayered neural network. Biol Cybern. 1975; 20(3-4):121-36. DOI: 10.1007/BF00342633. View