» Articles » PMID: 38180812

METTL3 Drives Telomere Targeting of TERRA LncRNA Through M6A-dependent R-loop Formation: a Therapeutic Target for ALT-positive Neuroblastoma

Abstract

Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N6 position of internal adenosine (m6A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m6A/METTL3 results in telomere damage. We observed that m6A modification is abundant in R-loop enriched TERRA, and the m6A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m6A drives telomere targeting of TERRA via R-loops, and this m6A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB.

Citing Articles

Mechanisms underlining R-loop biology and implications for human disease.

Liu J, Li F, Cao Y, Lv Y, Lei K, Tu Z Front Cell Dev Biol. 2025; 13:1537731.

PMID: 40061014 PMC: 11885306. DOI: 10.3389/fcell.2025.1537731.


Epigenetic and epitranscriptomic role of lncRNA in carcinogenesis (Review).

Dai C, Qianjiang H, Fu R, Yang H, Shi A, Luo H Int J Oncol. 2025; 66(4).

PMID: 40017127 PMC: 11900940. DOI: 10.3892/ijo.2025.5735.


Genome-wide profiling of N6-methyladenosine-modified pseudogene-derived long noncoding RNAs reveals the tumour-promoting and innate immune-restraining function of RPS15AP12 in ovarian cancer.

Xu J, Ren Y, Lu J, Qin F, Yang D, Tang C Clin Transl Med. 2025; 15(3):e70249.

PMID: 40000433 PMC: 11859666. DOI: 10.1002/ctm2.70249.


The role of N(6)-methyladenosine (m6a) modification in cancer: recent advances and future directions.

Xie X, Fang Z, Zhang H, Wang Z, Li J, Jia Y EXCLI J. 2025; 24:113-150.

PMID: 39967906 PMC: 11830918. DOI: 10.17179/excli2024-7935.


Cross-regulation of RNA methylation modifications and R-loops: from molecular mechanisms to clinical implications.

Wu Y, Lin S, Chen H, Zheng X Cell Mol Life Sci. 2024; 82(1):1.

PMID: 39656315 PMC: 11631829. DOI: 10.1007/s00018-024-05536-1.


References
1.
Jansky S, Sharma A, Korber V, Quintero A, Toprak U, Wecht E . Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat Genet. 2021; 53(5):683-693. DOI: 10.1038/s41588-021-00806-1. View

2.
Pratanwanich P, Yao F, Chen Y, Koh C, Kei Wan Y, Hendra C . Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat Biotechnol. 2021; 39(11):1394-1402. DOI: 10.1038/s41587-021-00949-w. View

3.
Pockrandt C, Alzamel M, Iliopoulos C, Reinert K . GenMap: ultra-fast computation of genome mappability. Bioinformatics. 2020; 36(12):3687-3692. PMC: 7320602. DOI: 10.1093/bioinformatics/btaa222. View

4.
Porman A, Roberts J, Duncan E, Chrupcala M, Levine A, Kennedy M . A single N6-methyladenosine site regulates lncRNA HOTAIR function in breast cancer cells. PLoS Biol. 2022; 20(11):e3001885. PMC: 9731500. DOI: 10.1371/journal.pbio.3001885. View

5.
Xiong F, Wang R, Lee J, Li S, Chen S, Liao Z . RNA mA modification orchestrates a LINE-1-host interaction that facilitates retrotransposition and contributes to long gene vulnerability. Cell Res. 2021; 31(8):861-885. PMC: 8324889. DOI: 10.1038/s41422-021-00515-8. View