6.
Ahola A, Polonen R, Aalto-Setala K, Hyttinen J
. Simultaneous Measurement of Contraction and Calcium Transients in Stem Cell Derived Cardiomyocytes. Ann Biomed Eng. 2017; 46(1):148-158.
PMC: 5754453.
DOI: 10.1007/s10439-017-1933-2.
View
7.
Hayakawa T, Kunihiro T, Ando T, Kobayashi S, Matsui E, Yada H
. Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology. J Mol Cell Cardiol. 2014; 77:178-91.
DOI: 10.1016/j.yjmcc.2014.09.010.
View
8.
Arakaki X, Arechavala R, Choy E, Bautista J, Bliss B, Molloy C
. The connection between heart rate variability (HRV), neurological health, and cognition: A literature review. Front Neurosci. 2023; 17:1055445.
PMC: 10014754.
DOI: 10.3389/fnins.2023.1055445.
View
9.
Grancharova T, Gerbin K, Rosenberg A, Roco C, Arakaki J, DeLizo C
. A comprehensive analysis of gene expression changes in a high replicate and open-source dataset of differentiating hiPSC-derived cardiomyocytes. Sci Rep. 2021; 11(1):15845.
PMC: 8338992.
DOI: 10.1038/s41598-021-94732-1.
View
10.
Karakikes I, Ameen M, Termglinchan V, Wu J
. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res. 2015; 117(1):80-8.
PMC: 4546707.
DOI: 10.1161/CIRCRESAHA.117.305365.
View
11.
Huo J, Wei F, Cai C, Lyn-Cook B, Pang L
. Sex-Related Differences in Drug-Induced QT Prolongation and Torsades de Pointes: A New Model System with Human iPSC-CMs. Toxicol Sci. 2018; 167(2):360-374.
DOI: 10.1093/toxsci/kfy239.
View
12.
Wu J, Garg P, Yoshida Y, Yamanaka S, Gepstein L, Hulot J
. Towards Precision Medicine With Human iPSCs for Cardiac Channelopathies. Circ Res. 2019; 125(6):653-658.
PMC: 10765953.
DOI: 10.1161/CIRCRESAHA.119.315209.
View
13.
Guo G, Pinello L, Han X, Lai S, Shen L, Lin T
. Serum-Based Culture Conditions Provoke Gene Expression Variability in Mouse Embryonic Stem Cells as Revealed by Single-Cell Analysis. Cell Rep. 2016; 14(4):956-965.
PMC: 4740311.
DOI: 10.1016/j.celrep.2015.12.089.
View
14.
Kim C, Majdi M, Xia P, Wei K, Talantova M, Spiering S
. Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev. 2009; 19(6):783-95.
PMC: 3135229.
DOI: 10.1089/scd.2009.0349.
View
15.
Huebsch N, Loskill P, Mandegar M, Marks N, Sheehan A, Ma Z
. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales. Tissue Eng Part C Methods. 2014; 21(5):467-79.
PMC: 4410286.
DOI: 10.1089/ten.TEC.2014.0283.
View
16.
Osten F, Weber N, Wendland M, Holler T, Piep B, Krohn S
. Myosin expression and contractile function are altered by replating stem cell-derived cardiomyocytes. J Gen Physiol. 2023; 155(11).
PMC: 10473967.
DOI: 10.1085/jgp.202313377.
View
17.
Mummery C, Zhang J, Ng E, Elliott D, Elefanty A, Kamp T
. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012; 111(3):344-58.
PMC: 3578601.
DOI: 10.1161/CIRCRESAHA.110.227512.
View
18.
Funakoshi S, Fernandes I, Mastikhina O, Wilkinson D, Tran T, Dhahri W
. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nat Commun. 2021; 12(1):3155.
PMC: 8155185.
DOI: 10.1038/s41467-021-23329-z.
View
19.
Hong Y, Zhao Y, Li H, Yang Y, Chen M, Wang X
. Engineering the maturation of stem cell-derived cardiomyocytes. Front Bioeng Biotechnol. 2023; 11:1155052.
PMC: 10073467.
DOI: 10.3389/fbioe.2023.1155052.
View
20.
Lee P, Klos M, Bollensdorff C, Hou L, Ewart P, Kamp T
. Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circ Res. 2012; 110(12):1556-63.
PMC: 3423450.
DOI: 10.1161/CIRCRESAHA.111.262535.
View