» Articles » PMID: 38111063

De Novo Identification of Expressed Cancer Somatic Mutations from Single-cell RNA Sequencing Data

Overview
Journal Genome Med
Publisher Biomed Central
Specialty Genetics
Date 2023 Dec 19
PMID 38111063
Authors
Affiliations
Soon will be listed here.
Abstract

Identifying expressed somatic mutations from single-cell RNA sequencing data de novo is challenging but highly valuable. We propose RESA - Recurrently Expressed SNV Analysis, a computational framework to identify expressed somatic mutations from scRNA-seq data. RESA achieves an average precision of 0.77 on three in silico spike-in datasets. In extensive benchmarking against existing methods using 19 datasets, RESA consistently outperforms them. Furthermore, we applied RESA to analyze intratumor mutational heterogeneity in a melanoma drug resistance dataset. By enabling high precision detection of expressed somatic mutations, RESA substantially enhances the reliability of mutational analysis in scRNA-seq. RESA is available at https://github.com/ShenLab-Genomics/RESA .

Citing Articles

Correction: Genome Med 15, 115 & Genome Med 16, 3.

Shen N Genome Med. 2024; 16(1):68.

PMID: 38745249 PMC: 11092180. DOI: 10.1186/s13073-024-01343-2.


De novo detection of somatic variants in high-quality long-read single-cell RNA sequencing data.

Dondi A, Borgsmuller N, Ferreira P, Haas B, Jacob F, Heinzelmann-Schwarz V bioRxiv. 2024; .

PMID: 38496441 PMC: 10942462. DOI: 10.1101/2024.03.06.583775.

References
1.
Nam A, Kim K, Chaligne R, Izzo F, Ang C, Taylor J . Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature. 2019; 571(7765):355-360. PMC: 6782071. DOI: 10.1038/s41586-019-1367-0. View

2.
Rodriguez-Meira A, Buck G, Clark S, Povinelli B, Alcolea V, Louka E . Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing. Mol Cell. 2019; 73(6):1292-1305.e8. PMC: 6436961. DOI: 10.1016/j.molcel.2019.01.009. View

3.
Giustacchini A, Thongjuea S, Barkas N, Woll P, Povinelli B, Booth C . Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med. 2017; 23(6):692-702. DOI: 10.1038/nm.4336. View

4.
Petti A, Williams S, Miller C, Fiddes I, Srivatsan S, Chen D . A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing. Nat Commun. 2019; 10(1):3660. PMC: 6694122. DOI: 10.1038/s41467-019-11591-1. View

5.
Wang L, Fan J, Francis J, Georghiou G, Hergert S, Li S . Integrated single-cell genetic and transcriptional analysis suggests novel drivers of chronic lymphocytic leukemia. Genome Res. 2017; 27(8):1300-1311. PMC: 5538547. DOI: 10.1101/gr.217331.116. View