» Articles » PMID: 38104314

Gene Regulatory Network Analysis Predicts Cooperating Transcription Factor Regulons Required for FLT3-ITD+ AML Growth

Abstract

Acute myeloid leukemia (AML) is a heterogeneous disease caused by different mutations. Previously, we showed that each mutational subtype develops its specific gene regulatory network (GRN) with transcription factors interacting within multiple gene modules, many of which are transcription factor genes themselves. Here, we hypothesize that highly connected nodes within such networks comprise crucial regulators of AML maintenance. We test this hypothesis using FLT3-ITD-mutated AML as a model and conduct an shRNA drop-out screen informed by this analysis. We show that AML-specific GRNs predict crucial regulatory modules required for AML growth. Furthermore, our work shows that all modules are highly connected and regulate each other. The careful multi-omic analysis of the role of one (RUNX1) module by shRNA and chemical inhibition shows that this transcription factor and its target genes stabilize the GRN of FLT3-ITD+ AML and that its removal leads to GRN collapse and cell death.

Citing Articles

Identification of critical genes and drug repurposing targets in entorhinal cortex of Alzheimer's disease.

Hosseinpouri A, Sadegh K, Zarei-Behjani Z, Dehghan Z, Karbalaei R Neurogenetics. 2025; 26(1):27.

PMID: 39928227 DOI: 10.1007/s10048-025-00806-x.


Regulation of developmentally controlled enhancer activity by extrinsic signals in normal and malignant cells: AP-1 at the centre.

Maytum A, Obier N, Cauchy P, Bonifer C Front Epigenet Epigenom. 2024; 2.

PMID: 39506987 PMC: 7616781. DOI: 10.3389/freae.2024.1465958.


Gene regulatory network and signalling pathway rewiring: How blood cancer cells shift their shapes to evade drug treatment.

Bonifer C, Cockerill P Oncotarget. 2024; 15:714-716.

PMID: 39392365 PMC: 11468314. DOI: 10.18632/oncotarget.28662.


Pharmacological inhibition of RAS overcomes FLT3 inhibitor resistance in FLT3-ITD+ AML through AP-1 and RUNX1.

Coleman D, Keane P, Chin P, Ames L, Kellaway S, Blair H iScience. 2024; 27(4):109576.

PMID: 38638836 PMC: 11024925. DOI: 10.1016/j.isci.2024.109576.


Gene regulation in t(6;9) DEK::NUP214 Acute Myeloid Leukemia resembles that of FLT3-ITD/NPM1 Acute Myeloid Leukemia but with an altered HOX/MEIS axis.

Potluri S, Kellaway S, Coleman D, Keane P, Imperato M, Assi S Leukemia. 2024; 38(2):403-407.

PMID: 38172329 PMC: 10844093. DOI: 10.1038/s41375-023-02118-1.


References
1.
Saldanha A . Java Treeview--extensible visualization of microarray data. Bioinformatics. 2004; 20(17):3246-8. DOI: 10.1093/bioinformatics/bth349. View

2.
Goyama S, Schibler J, Cunningham L, Zhang Y, Rao Y, Nishimoto N . Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J Clin Invest. 2013; 123(9):3876-88. PMC: 3754260. DOI: 10.1172/JCI68557. View

3.
Ley T, Miller C, Ding L, Raphael B, Mungall A, Robertson A . Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368(22):2059-74. PMC: 3767041. DOI: 10.1056/NEJMoa1301689. View

4.
Assi S, Imperato M, Coleman D, Pickin A, Potluri S, Ptasinska A . Subtype-specific regulatory network rewiring in acute myeloid leukemia. Nat Genet. 2018; 51(1):151-162. PMC: 6330064. DOI: 10.1038/s41588-018-0270-1. View

5.
Robinson M, McCarthy D, Smyth G . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009; 26(1):139-40. PMC: 2796818. DOI: 10.1093/bioinformatics/btp616. View