6.
Rahmani F, Movahedin M, Mazaheri Z, Soleimani M
. Transplantation of mouse iPSCs into testis of azoospermic mouse model: in vivo and in vitro study. Artif Cells Nanomed Biotechnol. 2019; 47(1):1585-1594.
DOI: 10.1080/21691401.2019.1594854.
View
7.
Makoolati Z, Movahedin M, Forouzandeh-Moghadam M
. germ cell differentiation from embryonic stem cells of mice: induction control by BMP4 signalling. Biosci Rep. 2016; 36(6).
PMC: 5100000.
DOI: 10.1042/BSR20160348.
View
8.
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K
. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131(5):861-72.
DOI: 10.1016/j.cell.2007.11.019.
View
9.
Thomson J, Itskovitz-Eldor J, Shapiro S, Waknitz M, Swiergiel J, Marshall V
. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282(5391):1145-7.
DOI: 10.1126/science.282.5391.1145.
View
10.
Villa-Diaz L, Ross A, Lahann J, Krebsbach P
. Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells. 2012; 31(1):1-7.
PMC: 3537180.
DOI: 10.1002/stem.1260.
View
11.
Liu G, David B, Trawczynski M, Fessler R
. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep. 2019; 16(1):3-32.
PMC: 6987053.
DOI: 10.1007/s12015-019-09935-x.
View
12.
Wang Y, Chou B, Dowey S, He C, Gerecht S, Cheng L
. Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res. 2013; 11(3):1103-16.
PMC: 4628790.
DOI: 10.1016/j.scr.2013.07.011.
View
13.
Ludwig T, Levenstein M, Jones J, Berggren W, Mitchen E, Frane J
. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006; 24(2):185-7.
DOI: 10.1038/nbt1177.
View
14.
Allegrucci C, Denning C, Burridge P, Steele W, Sinclair K, Young L
. Human embryonic stem cells as a model for nutritional programming: an evaluation. Reprod Toxicol. 2005; 20(3):353-67.
DOI: 10.1016/j.reprotox.2005.04.010.
View
15.
Guo R, Ye X, Yang J, Zhou Z, Tian C, Wang H
. Feeders facilitate telomere maintenance and chromosomal stability of embryonic stem cells. Nat Commun. 2018; 9(1):2620.
PMC: 6033898.
DOI: 10.1038/s41467-018-05038-2.
View
16.
Ullmann U, Int Veld P, Gilles C, Sermon K, De Rycke M, van de Velde H
. Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol Hum Reprod. 2006; 13(1):21-32.
DOI: 10.1093/molehr/gal091.
View
17.
Hassani S, Moradi S, Taleahmad S, Braun T, Baharvand H
. Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cell Mol Life Sci. 2018; 76(5):873-892.
PMC: 11105545.
DOI: 10.1007/s00018-018-2965-y.
View
18.
OLeary T, Heindryckx B, Lierman S, van Bruggen D, Goeman J, Vandewoestyne M
. Tracking the progression of the human inner cell mass during embryonic stem cell derivation. Nat Biotechnol. 2012; 30(3):278-82.
DOI: 10.1038/nbt.2135.
View
19.
Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X
. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell. 2010; 6(5):468-78.
PMC: 2954317.
DOI: 10.1016/j.stem.2010.03.015.
View
20.
van der Jeught M, OLeary T, Ghimire S, Lierman S, Duggal G, Versieren K
. The combination of inhibitors of FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation. Stem Cells Dev. 2012; 22(2):296-306.
PMC: 3545355.
DOI: 10.1089/scd.2012.0256.
View