» Articles » PMID: 37996617

High-throughput Screening of Genetic and Cellular Drivers of Syncytium Formation Induced by the Spike Protein of SARS-CoV-2

Overview
Journal Nat Biomed Eng
Publisher Springer Nature
Date 2023 Nov 23
PMID 37996617
Authors
Affiliations
Soon will be listed here.
Abstract

Mapping mutations and discovering cellular determinants that cause the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce infected cells to form syncytia would facilitate the development of strategies for blocking the formation of such cell-cell fusion. Here we describe high-throughput screening methods based on droplet microfluidics and the size-exclusion selection of syncytia, coupled with large-scale mutagenesis and genome-wide knockout screening via clustered regularly interspaced short palindromic repeats (CRISPR), for the large-scale identification of determinants of cell-cell fusion. We used the methods to perform deep mutational scans in spike-presenting cells to pinpoint mutable syncytium-enhancing substitutions in two regions of the spike protein (the fusion peptide proximal region and the furin-cleavage site). We also used a genome-wide CRISPR screen in cells expressing the receptor angiotensin-converting enzyme 2 to identify inhibitors of clathrin-mediated endocytosis that impede syncytium formation, which we validated in hamsters infected with SARS-CoV-2. Finding genetic and cellular determinants of the formation of syncytia may reveal insights into the physiological and pathological consequences of cell-cell fusion.

Citing Articles

SARS-CoV-2 S-protein expression drives syncytia formation in endothelial cells.

Tieu K, Espey M, Narayanan A, Heise R, Alem F, Conway D Sci Rep. 2025; 15(1):3549.

PMID: 39875448 PMC: 11775288. DOI: 10.1038/s41598-025-86242-1.


Mesenchymal Stem Cells Carrying Viral Fusogenic Protein p14 to Treat Solid Tumors by Inducing Cell-Cell Fusion and Immune Activation.

Wang Y, Pang X, Li R, Chen J, Wen C, Zhu H Research (Wash D C). 2025; 8:0594.

PMID: 39872128 PMC: 11770199. DOI: 10.34133/research.0594.


A Machine Vision Perspective on Droplet-Based Microfluidics.

Wang J, Wang H, Lai H, Liu F, Cui B, Yu W Adv Sci (Weinh). 2025; 12(8):e2413146.

PMID: 39742464 PMC: 11848540. DOI: 10.1002/advs.202413146.


Genome-wide CRISPR screens identify CLC-2 as a drug target for anti-herpesvirus therapy: tackling herpesvirus drug resistance.

Yang F, Wei N, Cai S, Liu J, Lan Q, Zhang H Sci China Life Sci. 2024; 68(2):515-526.

PMID: 39428427 DOI: 10.1007/s11427-023-2627-8.


Screening for drivers of SARS-CoV-2 uptake.

Autour A, Merten C Nat Biomed Eng. 2023; 8(3):205-206.

PMID: 38158441 DOI: 10.1038/s41551-023-01170-7.

References
1.
Rajah M, Bernier A, Buchrieser J, Schwartz O . The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation. J Mol Biol. 2021; 434(6):167280. PMC: 8485708. DOI: 10.1016/j.jmb.2021.167280. View

2.
Chan J, Hu B, Chai Y, Shuai H, Liu H, Shi J . Virological features and pathogenicity of SARS-CoV-2 Omicron BA.2. Cell Rep Med. 2022; 3(9):100743. PMC: 9420712. DOI: 10.1016/j.xcrm.2022.100743. View

3.
Helbig I, Lopez-Hernandez T, Shor O, Galer P, Ganesan S, Pendziwiat M . A Recurrent Missense Variant in AP2M1 Impairs Clathrin-Mediated Endocytosis and Causes Developmental and Epileptic Encephalopathy. Am J Hum Genet. 2019; 104(6):1060-1072. PMC: 6556875. DOI: 10.1016/j.ajhg.2019.04.001. View

4.
Li W, Xu H, Xiao T, Cong L, Love M, Zhang F . MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014; 15(12):554. PMC: 4290824. DOI: 10.1186/s13059-014-0554-4. View

5.
Ma D, Chen C, Jhanji V, Xu C, Yuan X, Liang J . Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea. Eye (Lond). 2020; 34(7):1212-1219. PMC: 7205026. DOI: 10.1038/s41433-020-0939-4. View