» Articles » PMID: 34168070

Structural Basis for Enhanced Infectivity and Immune Evasion of SARS-CoV-2 Variants

Abstract

Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains in the COVID-19 pandemic. We report here cryo-electron microscopy structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Amino acid substitutions in the B.1.1.7 protein increase both the accessibility of its receptor binding domain and the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement may account for the increased transmissibility. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, making it resistant to some potent neutralizing antibodies. These findings provide structural details on how SARS-CoV-2 has evolved to enhance viral fitness and immune evasion.

Citing Articles

Predictive Insights Into Bioactive Compounds from Streptomyces as Inhibitors of SARS-CoV-2 Mutant Strains by Receptor Binding Domain: Molecular Docking and Dynamics Simulation Approaches.

Kalhor H, Mokhtarian M, Rahimi H, Shahbazi B, Kalhor R, Komeili Movahed T Iran J Pharm Res. 2025; 23(1):e150879.

PMID: 40066112 PMC: 11892749. DOI: 10.5812/ijpr-150879.


Structural and Conformational Impact of Deleterious Spike Protein Mutations in SARS-CoV-2 Omicron Lineages.

Khalid A, Ahmed K, Kanji A, Munir T, Bukhari S, Hasan Z bioRxiv. 2025; .

PMID: 40060440 PMC: 11888324. DOI: 10.1101/2025.02.25.639252.


JN.1 variants circulating in Italy from October 2023 to April 2024: genetic diversity and immune recognition.

Giombini E, Schiavoni I, Ambrosio L, Lo Presti A, Di Martino A, Fiore S BMC Infect Dis. 2025; 25(1):291.

PMID: 40022017 PMC: 11871800. DOI: 10.1186/s12879-025-10685-0.


NIEAs elicited by wild-type SARS-CoV-2 primary infection fail to enhance the infectivity of Omicron variants.

Gui Q, Wang H, Liu C, Li W, Zhou B, Tang S Virol J. 2025; 22(1):45.

PMID: 39994733 PMC: 11849304. DOI: 10.1186/s12985-025-02667-0.


Structural Immunology of SARS-CoV-2.

Yuan M, Wilson I Immunol Rev. 2024; 329(1):e13431.

PMID: 39731211 PMC: 11727448. DOI: 10.1111/imr.13431.


References
1.
Zhu X, Mannar D, Srivastava S, Berezuk A, Demers J, Saville J . Cryo-electron microscopy structures of the N501Y SARS-CoV-2 spike protein in complex with ACE2 and 2 potent neutralizing antibodies. PLoS Biol. 2021; 19(4):e3001237. PMC: 8112707. DOI: 10.1371/journal.pbio.3001237. View

2.
Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S . Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020; 30(4):343-355. PMC: 7104723. DOI: 10.1038/s41422-020-0305-x. View

3.
Wibmer C, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B . SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med. 2021; 27(4):622-625. DOI: 10.1038/s41591-021-01285-x. View

4.
Walls A, Park Y, Tortorici M, Wall A, McGuire A, Veesler D . Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181(2):281-292.e6. PMC: 7102599. DOI: 10.1016/j.cell.2020.02.058. View

5.
Korber B, Fischer W, Gnanakaran S, Yoon H, Theiler J, Abfalterer W . Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020; 182(4):812-827.e19. PMC: 7332439. DOI: 10.1016/j.cell.2020.06.043. View