6.
Fernandez De Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset A, Benkirane-Jessel N
. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018; 9:2041731418776819.
PMC: 5990883.
DOI: 10.1177/2041731418776819.
View
7.
Haugen H, Lyngstadaas S, Rossi F, Perale G
. Bone grafts: which is the ideal biomaterial?. J Clin Periodontol. 2019; 46 Suppl 21:92-102.
DOI: 10.1111/jcpe.13058.
View
8.
Dutta S, Passi D, Singh P, Bhuibhar A
. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Ir J Med Sci. 2014; 184(1):101-6.
DOI: 10.1007/s11845-014-1199-8.
View
9.
Sprio S, Guicciardi S, Dapporto M, Melandri C, Tampieri A
. Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments. J Mech Behav Biomed Mater. 2012; 17:1-10.
DOI: 10.1016/j.jmbbm.2012.07.013.
View
10.
Dehghanghadikolaei A, Fotovvati B
. Coating Techniques for Functional Enhancement of Metal Implants for Bone Replacement: A Review. Materials (Basel). 2019; 12(11).
PMC: 6600793.
DOI: 10.3390/ma12111795.
View
11.
Zhang Y, Chen S, Shao J, van den Beucken J
. Combinatorial Surface Roughness Effects on Osteoclastogenesis and Osteogenesis. ACS Appl Mater Interfaces. 2018; 10(43):36652-36663.
PMC: 6213029.
DOI: 10.1021/acsami.8b10992.
View
12.
Fu Q, Rahaman M, Dogan F, Bal B
. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J Biomed Mater Res B Appl Biomater. 2007; 86(1):125-35.
DOI: 10.1002/jbm.b.30997.
View
13.
Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y
. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem. 1997; 121(2):317-24.
DOI: 10.1093/oxfordjournals.jbchem.a021589.
View
14.
Fu Q, Rahaman M, Bal B, Kuroki K, Brown R
. In vivo evaluation of 13-93 bioactive glass scaffolds with trabecular and oriented microstructures in a subcutaneous rat implantation model. J Biomed Mater Res A. 2010; 95(1):235-44.
DOI: 10.1002/jbm.a.32827.
View
15.
Hasan A, Byambaa B, Morshed M, Cheikh M, Shakoor R, Mustafy T
. Advances in osteobiologic materials for bone substitutes. J Tissue Eng Regen Med. 2018; 12(6):1448-1468.
DOI: 10.1002/term.2677.
View
16.
Hotaling N, Bharti K, Kriel H, Simon Jr C
. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials. 2015; 61:327-38.
PMC: 4492344.
DOI: 10.1016/j.biomaterials.2015.05.015.
View
17.
Vandamme K, Naert I, Vander Sloten J, Puers R, Duyck J
. Effect of implant surface roughness and loading on peri-implant bone formation. J Periodontol. 2008; 79(1):150-7.
DOI: 10.1902/jop.2008.060413.
View
18.
Farhangdoust S, Zamanian A, Yasaei M, Khorami M
. The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Mater Sci Eng C Mater Biol Appl. 2014; 33(1):453-60.
DOI: 10.1016/j.msec.2012.09.013.
View
19.
Akay G, Birch M, Bokhari M
. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Biomaterials. 2004; 25(18):3991-4000.
DOI: 10.1016/j.biomaterials.2003.10.086.
View
20.
Jung J, Naleway S, Maker Y, Kang K, Lee J, Ha J
. 3D Printed Templating of Extrinsic Freeze-Casting for Macro-Microporous Biomaterials. ACS Biomater Sci Eng. 2021; 5(5):2122-2133.
DOI: 10.1021/acsbiomaterials.8b01308.
View