» Articles » PMID: 37934909

PEP-Patch: Electrostatics in Protein-Protein Recognition, Specificity, and Antibody Developability

Abstract

The electrostatic properties of proteins arise from the number and distribution of polar and charged residues. Electrostatic interactions in proteins play a critical role in numerous processes such as molecular recognition, protein solubility, viscosity, and antibody developability. Thus, characterizing and quantifying electrostatic properties of a protein are prerequisites for understanding these processes. Here, we present PEP-Patch, a tool to visualize and quantify the electrostatic potential on the protein surface in terms of surface patches, denoting separated areas of the surface with a common physical property. We highlight its applicability to elucidate protease substrate specificity and antibody-antigen recognition and predict heparin column retention times of antibodies as an indicator of pharmacokinetics.

Citing Articles

PROPERMAB: an integrative framework for prediction of antibody developability using machine learning.

Li B, Luo S, Wang W, Xu J, Liu D, Shameem M MAbs. 2025; 17(1):2474521.

PMID: 40042626 PMC: 11901398. DOI: 10.1080/19420862.2025.2474521.


Structural analysis of the impact of germline mutations of p16 in melanoma prone families.

Arun D, Rath S Mol Divers. 2025; .

PMID: 39821174 DOI: 10.1007/s11030-024-11089-z.


Biophysical cartography of the native and human-engineered antibody landscapes quantifies the plasticity of antibody developability.

Bashour H, Smorodina E, Pariset M, Zhong J, Akbar R, Chernigovskaya M Commun Biol. 2024; 7(1):922.

PMID: 39085379 PMC: 11291509. DOI: 10.1038/s42003-024-06561-3.


Molecular surface descriptors to predict antibody developability: sensitivity to parameters, structure models, and conformational sampling.

Park E, Izadi S MAbs. 2024; 16(1):2362788.

PMID: 38853585 PMC: 11168226. DOI: 10.1080/19420862.2024.2362788.


Structure and Dynamics Guiding Design of Antibody Therapeutics and Vaccines.

Fernandez-Quintero M, Pomarici N, Fischer A, Hoerschinger V, Kroell K, Riccabona J Antibodies (Basel). 2023; 12(4).

PMID: 37873864 PMC: 10594513. DOI: 10.3390/antib12040067.

References
1.
Petrey D, Honig B . GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences. Methods Enzymol. 2003; 374:492-509. DOI: 10.1016/S0076-6879(03)74021-X. View

2.
Tu C, Terraube V, Tam A, Stochaj W, Fennell B, Lin L . A Combination of Structural and Empirical Analyses Delineates the Key Contacts Mediating Stability and Affinity Increases in an Optimized Biotherapeutic Single-chain Fv (scFv). J Biol Chem. 2015; 291(3):1267-76. PMC: 4714214. DOI: 10.1074/jbc.M115.688010. View

3.
Zhou H, Pang X . Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev. 2018; 118(4):1691-1741. PMC: 5831536. DOI: 10.1021/acs.chemrev.7b00305. View

4.
Fernandez-Quintero M, Hoerschinger V, Lamp L, Bujotzek A, Georges G, Liedl K . V -V interdomain dynamics observed by computer simulations and NMR. Proteins. 2020; 88(7):830-839. PMC: 7317758. DOI: 10.1002/prot.25872. View

5.
Waldner B, Kraml J, Kahler U, Spinn A, Schauperl M, Podewitz M . Electrostatic recognition in substrate binding to serine proteases. J Mol Recognit. 2018; 31(10):e2727. PMC: 6175425. DOI: 10.1002/jmr.2727. View