» Articles » PMID: 37916885

A Region-resolved Proteomic Map of the Human Brain Enabled by High-throughput Proteomics

Overview
Journal EMBO J
Date 2023 Nov 2
PMID 37916885
Authors
Affiliations
Soon will be listed here.
Abstract

Substantial efforts are underway to deepen our understanding of human brain morphology, structure, and function using high-resolution imaging as well as high-content molecular profiling technologies. The current work adds to these approaches by providing a comprehensive and quantitative protein expression map of 13 anatomically distinct brain regions covering more than 11,000 proteins. This was enabled by the optimization, characterization, and implementation of a high-sensitivity and high-throughput microflow liquid chromatography timsTOF tandem mass spectrometry system (LC-MS/MS) capable of analyzing more than 2,000 consecutive samples prepared from formalin-fixed paraffin embedded (FFPE) material. Analysis of this proteomic resource highlighted brain region-enriched protein expression patterns and functional protein classes, protein localization differences between brain regions and individual markers for specific areas. To facilitate access to and ease further mining of the data by the scientific community, all data can be explored online in a purpose-built R Shiny app (https://brain-region-atlas.proteomics.ls.tum.de).

Citing Articles

A predictive system comprising serum microRNAs and radiomics for residual retroperitoneal masses in metastatic nonseminomatous germ cell tumors.

Li X, Ding R, Liu Z, Teixeira W, Ye J, Tian L Cell Rep Med. 2024; 5(12):101843.

PMID: 39672156 PMC: 11722113. DOI: 10.1016/j.xcrm.2024.101843.


Towards routine proteome profiling of FFPE tissue: insights from a 1,220-case pan-cancer study.

Tushaus J, Eckert S, Schliemann M, Zhou Y, Pfeiffer P, Halves C EMBO J. 2024; 44(1):304-329.

PMID: 39558110 PMC: 11697351. DOI: 10.1038/s44318-024-00289-w.


Ultra-fast label-free quantification and comprehensive proteome coverage with narrow-window data-independent acquisition.

Guzman U, Martinez-Val A, Ye Z, Damoc E, Arrey T, Pashkova A Nat Biotechnol. 2024; 42(12):1855-1866.

PMID: 38302753 PMC: 11631760. DOI: 10.1038/s41587-023-02099-7.


A region-resolved proteomic map of the human brain enabled by high-throughput proteomics.

Tushaus J, Sakhteman A, Lechner S, The M, Mucha E, Krisp C EMBO J. 2023; 42(23):e114665.

PMID: 37916885 PMC: 10690467. DOI: 10.15252/embj.2023114665.

References
1.
Green D, Rudd E, Laugharn Jr J . Adaptive Focused Acoustics (AFA) Improves the Performance of Microtiter Plate ELISAs. J Biomol Screen. 2014; 19(7):1124-30. DOI: 10.1177/1087057114523650. View

2.
Yu F, Teo G, Kong A, Haynes S, Avtonomov D, Geiszler D . Identification of modified peptides using localization-aware open search. Nat Commun. 2020; 11(1):4065. PMC: 7426425. DOI: 10.1038/s41467-020-17921-y. View

3.
Messner C, Demichev V, Bloomfield N, Yu J, White M, Kreidl M . Ultra-fast proteomics with Scanning SWATH. Nat Biotechnol. 2021; 39(7):846-854. PMC: 7611254. DOI: 10.1038/s41587-021-00860-4. View

4.
Cox J, Mann M . MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008; 26(12):1367-72. DOI: 10.1038/nbt.1511. View

5.
Meier F, Brunner A, Koch S, Koch H, Lubeck M, Krause M . Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics. 2018; 17(12):2534-2545. PMC: 6283298. DOI: 10.1074/mcp.TIR118.000900. View