6.
Rajani P, Rajasekaran C, Vasanthakumari M, Olsson S, Ravikanth G, Shaanker R
. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiol Res. 2020; 242:126595.
DOI: 10.1016/j.micres.2020.126595.
View
7.
Vecchi C, Cesar G, de Souza P, Caetano W, Bruschi M
. Mucoadhesive polymeric films comprising polyvinyl alcohol, polyvinylpyrrolidone, and poloxamer 407 for pharmaceutical applications. Pharm Dev Technol. 2020; 26(2):138-149.
DOI: 10.1080/10837450.2020.1849283.
View
8.
Muniz-Marquez D, Wong-Paz J, Contreras-Esquivel J, Rodriguez-Herrera R, Aguilar C
. Bioactive compounds from bay leaves (Laurus nobilis) extracted by microwave technology. Z Naturforsch C J Biosci. 2018; 73(9-10):401-407.
DOI: 10.1515/znc-2018-0009.
View
9.
Hosseini H, Jafari S
. Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Adv Colloid Interface Sci. 2020; 282:102210.
DOI: 10.1016/j.cis.2020.102210.
View
10.
Jannatyha N, Shojaee-Aliabadi S, Moslehishad M, Moradi E
. Comparing mechanical, barrier and antimicrobial properties of nanocellulose/CMC and nanochitosan/CMC composite films. Int J Biol Macromol. 2020; 164:2323-2328.
DOI: 10.1016/j.ijbiomac.2020.07.249.
View
11.
Fernandez N, Damiani N, Podaza E, Martucci J, Fasce D, Quiroz F
. L Extracts against : Antimicrobial activity, antioxidant capacity, hygienic behavior and colony strength. Saudi J Biol Sci. 2019; 26(5):906-912.
PMC: 6601024.
DOI: 10.1016/j.sjbs.2018.04.008.
View
12.
Peixoto L, Rosalen P, Ferreira G, Freires I, de Carvalho F, Castellano L
. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Arch Oral Biol. 2016; 73:179-185.
DOI: 10.1016/j.archoralbio.2016.10.013.
View
13.
Caputo L, Nazzaro F, Souza L, Aliberti L, De Martino L, Fratianni F
. Laurus nobilis: Composition of Essential Oil and Its Biological Activities. Molecules. 2017; 22(6).
PMC: 6152719.
DOI: 10.3390/molecules22060930.
View
14.
Oriola A, Oyedeji A
. Essential Oils and Their Compounds as Potential Anti-Influenza Agents. Molecules. 2022; 27(22).
PMC: 9693178.
DOI: 10.3390/molecules27227797.
View
15.
Liu T, Yang T
. Antimicrobial impact of the components of essential oil of Litsea cubeba from Taiwan and antimicrobial activity of the oil in food systems. Int J Food Microbiol. 2012; 156(1):68-75.
DOI: 10.1016/j.ijfoodmicro.2012.03.005.
View
16.
Oun A, Shin G, Kim J
. Multifunctional poly(vinyl alcohol) films using cellulose nanocrystals/oregano and cellulose nanocrystals/cinnamon Pickering emulsions: Effect of oil type and concentration. Int J Biol Macromol. 2021; 194:736-745.
DOI: 10.1016/j.ijbiomac.2021.11.119.
View
17.
Rossi P, Bao L, Luciani A, Panighi J, Desjobert J, Costa J
. (E)-Methylisoeugenol and elemicin: antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J Agric Food Chem. 2007; 55(18):7332-6.
DOI: 10.1021/jf070674u.
View
18.
Al-Asmar A, Giosafatto C, Sabbah M, Sanchez A, Villalonga Santana R, Mariniello L
. Effect of Mesoporous Silica Nanoparticles on The Physicochemical Properties of Pectin Packaging Material for Strawberry Wrapping. Nanomaterials (Basel). 2019; 10(1).
PMC: 7022709.
DOI: 10.3390/nano10010052.
View
19.
Pott D, De Abreu E Lima F, Soria C, Willmitzer L, Fernie A, Nikoloski Z
. Metabolic reconfiguration of strawberry physiology in response to postharvest practices. Food Chem. 2020; 321:126747.
DOI: 10.1016/j.foodchem.2020.126747.
View
20.
Ramos C, Teixeira B, Batista I, Matos O, Serrano C, Neng N
. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Nat Prod Res. 2011; 26(6):518-29.
DOI: 10.1080/14786419.2010.531478.
View