» Articles » PMID: 37884512

RNA-based Translation Activators for Targeted Gene Upregulation

Abstract

Technologies capable of programmable translation activation offer strategies to develop therapeutics for diseases caused by insufficient gene expression. Here, we present "translation-activating RNAs" (taRNAs), a bifunctional RNA-based molecular technology that binds to a specific mRNA of interest and directly upregulates its translation. taRNAs are constructed from a variety of viral or mammalian RNA internal ribosome entry sites (IRESs) and upregulate translation for a suite of target mRNAs. We minimize the taRNA scaffold to 94 nucleotides, identify two translation initiation factor proteins responsible for taRNA activity, and validate the technology by amplifying SYNGAP1 expression, a haploinsufficiency disease target, in patient-derived cells. Finally, taRNAs are suitable for delivery as RNA molecules by lipid nanoparticles (LNPs) to cell lines, primary neurons, and mouse liver in vivo. taRNAs provide a general and compact nucleic acid-based technology to upregulate protein production from endogenous mRNAs, and may open up possibilities for therapeutic RNA research.

Citing Articles

Internal cap-initiated translation for efficient protein production from circular mRNA.

Fukuchi K, Nakashima Y, Abe N, Kimura S, Hashiya F, Shichino Y Nat Biotechnol. 2025; .

PMID: 39972222 DOI: 10.1038/s41587-025-02561-8.


CRISPR/Cas-Mediated Gene Activation as a Versatile Tool for Treatment of Inherited Retinal Dystrophies.

Mittas D, Gavrilov Z, Ucambarlic E, Gandor C, Otify D, Becirovic E Adv Exp Med Biol. 2025; 1468:95-99.

PMID: 39930179 DOI: 10.1007/978-3-031-76550-6_16.


uORF-targeting steric block antisense oligonucleotides do not reproducibly increase RNASEH1 expression.

Ahlskog N, Svrzikapa N, Abuhamdah R, Kye M, Jad Y, Feng N Mol Ther Nucleic Acids. 2025; 36(1):102406.

PMID: 39759875 PMC: 11697566. DOI: 10.1016/j.omtn.2024.102406.


Prospects for gene therapy in polycystic kidney disease.

Chakraborty A, Yu A Curr Opin Nephrol Hypertens. 2024; 34(1):121-127.

PMID: 39499052 PMC: 11606769. DOI: 10.1097/MNH.0000000000001030.


Microproteins in cancer: identification, biological functions, and clinical implications.

Hofman D, Prensner J, van Heesch S Trends Genet. 2024; 41(2):146-161.

PMID: 39379206 PMC: 11794034. DOI: 10.1016/j.tig.2024.09.002.


References
1.
Zucchelli S, Fasolo F, Russo R, Cimatti L, Patrucco L, Takahashi H . SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells. Front Cell Neurosci. 2015; 9:174. PMC: 4429562. DOI: 10.3389/fncel.2015.00174. View

2.
Jan E, Sarnow P . Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J Mol Biol. 2002; 324(5):889-902. DOI: 10.1016/s0022-2836(02)01099-9. View

3.
Pisarev A, Chard L, Kaku Y, Johns H, Shatsky I, Belsham G . Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J Virol. 2004; 78(9):4487-97. PMC: 387690. DOI: 10.1128/jvi.78.9.4487-4497.2004. View

4.
Chamond N, Deforges J, Ulryck N, Sargueil B . 40S recruitment in the absence of eIF4G/4A by EMCV IRES refines the model for translation initiation on the archetype of Type II IRESs. Nucleic Acids Res. 2014; 42(16):10373-84. PMC: 4176346. DOI: 10.1093/nar/gku720. View

5.
Merkle T, Merz S, Reautschnig P, Blaha A, Li Q, Vogel P . Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol. 2019; 37(2):133-138. DOI: 10.1038/s41587-019-0013-6. View