6.
Cooke A, Florez C, Dunshee E, Lieber A, Terry M, Light C
. Quinolone Signal-Induced Outer Membrane Vesicles Enhance Biofilm Dispersion in Pseudomonas aeruginosa. mSphere. 2020; 5(6).
PMC: 7690959.
DOI: 10.1128/mSphere.01109-20.
View
7.
Fujita K, Akino T, Yoshioka H
. Characteristics of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun. 1988; 56(5):1385-7.
PMC: 259840.
DOI: 10.1128/iai.56.5.1385-1387.1988.
View
8.
Engel L, Hill J, Caballero A, Green L, OCallaghan R
. Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J Biol Chem. 1998; 273(27):16792-7.
DOI: 10.1074/jbc.273.27.16792.
View
9.
Prasad A, Shruptha P, Prabhu V, Srujan C, Nayak U, Anuradha C
. Pseudomonas aeruginosa virulence proteins pseudolysin and protease IV impede cutaneous wound healing. Lab Invest. 2020; 100(12):1532-1550.
PMC: 7683349.
DOI: 10.1038/s41374-020-00478-1.
View
10.
Kadurugamuwa J, Beveridge T
. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol. 1995; 177(14):3998-4008.
PMC: 177130.
DOI: 10.1128/jb.177.14.3998-4008.1995.
View
11.
Haba E, Pinazo A, Jauregui O, Espuny M, Infante M, Manresa A
. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng. 2002; 81(3):316-22.
DOI: 10.1002/bit.10474.
View
12.
Jensen P, Bjarnsholt T, Phipps R, Rasmussen T, Calum H, Christoffersen L
. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology (Reading). 2007; 153(Pt 5):1329-1338.
DOI: 10.1099/mic.0.2006/003863-0.
View
13.
Liberati N, Urbach J, Miyata S, Lee D, Drenkard E, Wu G
. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A. 2006; 103(8):2833-8.
PMC: 1413827.
DOI: 10.1073/pnas.0511100103.
View
14.
Azghani A, Miller E, Peterson B
. Virulence factors from Pseudomonas aeruginosa increase lung epithelial permeability. Lung. 2001; 178(5):261-9.
DOI: 10.1007/s004080000031.
View
15.
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L
. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022; 7(1):199.
PMC: 9233671.
DOI: 10.1038/s41392-022-01056-1.
View
16.
Marangon C, Martins V, Ling M, Melo C, Plepis A, Meyer R
. Combination of Rhamnolipid and Chitosan in Nanoparticles Boosts Their Antimicrobial Efficacy. ACS Appl Mater Interfaces. 2020; 12(5):5488-5499.
DOI: 10.1021/acsami.9b19253.
View
17.
Hauser A
. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol. 2009; 7(9):654-65.
PMC: 2766515.
DOI: 10.1038/nrmicro2199.
View
18.
Rahim R, Ochsner U, Olvera C, Graninger M, Messner P, Lam J
. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol. 2001; 40(3):708-18.
DOI: 10.1046/j.1365-2958.2001.02420.x.
View
19.
Sha R, Meng Q
. Antifungal activity of rhamnolipids against dimorphic fungi. J Gen Appl Microbiol. 2016; 62(5):233-239.
DOI: 10.2323/jgam.2016.04.004.
View
20.
Kang D, Kirienko D, Webster P, Fisher A, Kirienko N
. Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response. Virulence. 2018; 9(1):804-817.
PMC: 5955448.
DOI: 10.1080/21505594.2018.1449508.
View