» Articles » PMID: 37775650

New Drug Discovery of Cardiac Anti-arrhythmic Drugs: Insights in Animal Models

Abstract

Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.

Citing Articles

Cardioprotective effects of the electrolyte solution sterofundin and the possible underlying mechanisms.

Chen M, Xiao Y, Zheng J, Zhao P, Cheng L, Jiang C Front Pharmacol. 2025; 15():1449831.

PMID: 39830345 PMC: 11738938. DOI: 10.3389/fphar.2024.1449831.


Chelerythrine triggers the prolongation of QT interval and induces cardiotoxicity by promoting the degradation of hERG channels.

Wang F, Wang B, Gu X, Li X, Liu X, Li B J Biol Chem. 2024; 301(1):108023.

PMID: 39608718 PMC: 11721429. DOI: 10.1016/j.jbc.2024.108023.


Multi-faceted potential of sophoridine compound's anti-arrhythmic and antioxidant effects through ROS/CaMKII pathway.

Sun S, Shi F, Zhao G, Zhang H Heliyon. 2024; 10(18):e37542.

PMID: 39347430 PMC: 11437953. DOI: 10.1016/j.heliyon.2024.e37542.


Fentanyl and Sudden Death-A Postmortem Perspective for Diagnosing and Predicting Risk.

Strenja I, Dadic-Hero E, Perkovic M, Sosa I Diagnostics (Basel). 2024; 14(17).

PMID: 39272779 PMC: 11394624. DOI: 10.3390/diagnostics14171995.


Barium Chloride-Induced Cardiac Arrhythmia Mouse Model Exerts an Experimental Arrhythmia for Pharmacological Investigations.

Zeng M, Huang L, Zheng X, Weng L, Weng C Life (Basel). 2024; 14(8).

PMID: 39202788 PMC: 11355614. DOI: 10.3390/life14081047.


References
1.
Blinova K, Stohlman J, Vicente J, Chan D, Johannesen L, Hortigon-Vinagre M . Comprehensive Translational Assessment of Human-Induced Pluripotent Stem Cell Derived Cardiomyocytes for Evaluating Drug-Induced Arrhythmias. Toxicol Sci. 2016; 155(1):234-247. PMC: 6093617. DOI: 10.1093/toxsci/kfw200. View

2.
Guo Y, Lip G, Apostolakis S . Inflammation in atrial fibrillation. J Am Coll Cardiol. 2012; 60(22):2263-70. DOI: 10.1016/j.jacc.2012.04.063. View

3.
Cerrone M, Colombi B, Santoro M, di Barletta M, Scelsi M, Villani L . Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor. Circ Res. 2005; 96(10):e77-82. DOI: 10.1161/01.RES.0000169067.51055.72. View

4.
Moorjani N, Catarino P, Trabzuni D, Saleh S, Moorji A, Dzimiri N . Upregulation of Bcl-2 proteins during the transition to pressure overload-induced heart failure. Int J Cardiol. 2006; 116(1):27-33. DOI: 10.1016/j.ijcard.2006.04.037. View

5.
Polejaeva I, Ranjan R, Davies C, Regouski M, Hall J, Olsen A . Increased Susceptibility to Atrial Fibrillation Secondary to Atrial Fibrosis in Transgenic Goats Expressing Transforming Growth Factor-β1. J Cardiovasc Electrophysiol. 2016; 27(10):1220-1229. PMC: 5065395. DOI: 10.1111/jce.13049. View