» Articles » PMID: 37735170

Benchmarking Universal Quantum Gates Via Channel Spectrum

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Sep 21
PMID 37735170
Authors
Affiliations
Soon will be listed here.
Abstract

Noise remains the major obstacle to scalable quantum computation. Quantum benchmarking provides key information on noise properties and is an important step for developing more advanced quantum processors. However, current benchmarking methods are either limited to a specific subset of quantum gates or cannot directly describe the performance of the individual target gate. To overcome these limitations, we propose channel spectrum benchmarking (CSB), a method to infer the noise properties of the target gate, including process fidelity, stochastic fidelity, and some unitary parameters, from the eigenvalues of its noisy channel. Our CSB method is insensitive to state-preparation and measurement errors, and importantly, can benchmark universal gates and is scalable to many-qubit systems. Unlike standard randomized schemes, CSB can provide direct noise information for both target native gates and circuit fragments, allowing benchmarking and calibration of global entangling gates and frequently used modules in quantum algorithms like Trotterized Hamiltonian evolution operator in quantum simulation.

Citing Articles

Benchmarking universal quantum gates via channel spectrum.

Gu Y, Zhuang W, Chai X, Liu D Nat Commun. 2023; 14(1):5880.

PMID: 37735170 PMC: 10514318. DOI: 10.1038/s41467-023-41598-8.

References
1.
Zhang J, Hess P, Kyprianidis A, Becker P, Lee A, Smith J . Observation of a discrete time crystal. Nature. 2017; 543(7644):217-220. DOI: 10.1038/nature21413. View

2.
Mi X, Ippoliti M, Quintana C, Greene A, Chen Z, Gross J . Time-crystalline eigenstate order on a quantum processor. Nature. 2021; 601(7894):531-536. PMC: 8791837. DOI: 10.1038/s41586-021-04257-w. View

3.
Wu Y, Bao W, Cao S, Chen F, Chen M, Chen X . Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Phys Rev Lett. 2021; 127(18):180501. DOI: 10.1103/PhysRevLett.127.180501. View

4.
Kassal I, Jordan S, Love P, Mohseni M, Aspuru-Guzik A . Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc Natl Acad Sci U S A. 2008; 105(48):18681-6. PMC: 2596249. DOI: 10.1073/pnas.0808245105. View

5.
Blume-Kohout R, Gamble J, Nielsen E, Rudinger K, Mizrahi J, Fortier K . Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nat Commun. 2017; 8. PMC: 5330857. DOI: 10.1038/ncomms14485. View