» Articles » PMID: 34767433

Strong Quantum Computational Advantage Using a Superconducting Quantum Processor

Abstract

Scaling up to a large number of qubits with high-precision control is essential in the demonstrations of quantum computational advantage to exponentially outpace the classical hardware and algorithmic improvements. Here, we develop a two-dimensional programmable superconducting quantum processor, Zuchongzhi, which is composed of 66 functional qubits in a tunable coupling architecture. To characterize the performance of the whole system, we perform random quantum circuits sampling for benchmarking, up to a system size of 56 qubits and 20 cycles. The computational cost of the classical simulation of this task is estimated to be 2-3 orders of magnitude higher than the previous work on 53-qubit Sycamore processor [Nature 574, 505 (2019)NATUAS0028-083610.1038/s41586-019-1666-5. We estimate that the sampling task finished by Zuchongzhi in about 1.2 h will take the most powerful supercomputer at least 8 yr. Our work establishes an unambiguous quantum computational advantage that is infeasible for classical computation in a reasonable amount of time. The high-precision and programmable quantum computing platform opens a new door to explore novel many-body phenomena and implement complex quantum algorithms.

Citing Articles

Vulnerability of fault-tolerant topological quantum error correction to quantum deviations in code space.

Zhao Y, Liu D PNAS Nexus. 2025; 4(3):pgaf063.

PMID: 40078168 PMC: 11897702. DOI: 10.1093/pnasnexus/pgaf063.


Leapfrogging : harnessing 1432 GPUs for 7× faster quantum random circuit sampling.

Zhao X, Zhong H, Pan F, Chen Z, Fu R, Su Z Natl Sci Rev. 2025; 12(3):nwae317.

PMID: 40046721 PMC: 11881702. DOI: 10.1093/nsr/nwae317.


Thermalization and criticality on an analogue-digital quantum simulator.

Andersen T, Astrakhantsev N, Karamlou A, Berndtsson J, Motruk J, Szasz A Nature. 2025; 638(8049):79-85.

PMID: 39910386 PMC: 11798852. DOI: 10.1038/s41586-024-08460-3.


Hamiltonian learning for 300 trapped ion qubits with long-range couplings.

Guo S, Wu Y, Ye J, Zhang L, Wang Y, Lian W Sci Adv. 2025; 11(5):eadt4713.

PMID: 39879301 PMC: 11777192. DOI: 10.1126/sciadv.adt4713.


Digital quantum simulation of cosmological particle creation with IBM quantum computers.

Maceda M, Sabin C Sci Rep. 2025; 15(1):3476.

PMID: 39875445 PMC: 11775311. DOI: 10.1038/s41598-025-87015-6.