6.
Jervis A, Carbonell P, Vinaixa M, Dunstan M, Hollywood K, Robinson C
. Machine Learning of Designed Translational Control Allows Predictive Pathway Optimization in Escherichia coli. ACS Synth Biol. 2018; 8(1):127-136.
DOI: 10.1021/acssynbio.8b00398.
View
7.
Ishchuk O, Voronovsky A, Stasyk O, Gayda G, Gonchar M, Abbas C
. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res. 2008; 8(7):1164-74.
DOI: 10.1111/j.1567-1364.2008.00429.x.
View
8.
Lian J, Mishra S, Zhao H
. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng. 2018; 50:85-108.
DOI: 10.1016/j.ymben.2018.04.011.
View
9.
Nielsen J, Larsson C, van Maris A, Pronk J
. Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol. 2013; 24(3):398-404.
DOI: 10.1016/j.copbio.2013.03.023.
View
10.
Gietz R, Schiestl R
. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007; 2(1):31-4.
DOI: 10.1038/nprot.2007.13.
View
11.
Zhou Y, Yuan Y, Wu Y, Li L, Jameel A, Xing X
. Encoding Genetic Circuits with DNA Barcodes Paves the Way for Machine Learning-Assisted Metabolite Biosensor Response Curve Profiling in Yeast. ACS Synth Biol. 2022; 11(2):977-989.
DOI: 10.1021/acssynbio.1c00595.
View
12.
Ruchala J, Kurylenko O, Dmytruk K, Sibirny A
. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol. 2019; 47(1):109-132.
PMC: 6970964.
DOI: 10.1007/s10295-019-02242-x.
View
13.
Carratu L, Franceschelli S, Pardini C, Kobayashi G, Horvath I, Vigh L
. Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci U S A. 1996; 93(9):3870-5.
PMC: 39451.
DOI: 10.1073/pnas.93.9.3870.
View
14.
Oyetunde T, Liu D, Garcia Martin H, Tang Y
. Machine learning framework for assessment of microbial factory performance. PLoS One. 2019; 14(1):e0210558.
PMC: 6333410.
DOI: 10.1371/journal.pone.0210558.
View
15.
Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallstrom B
. Biofuels. Altered sterol composition renders yeast thermotolerant. Science. 2014; 346(6205):75-8.
DOI: 10.1126/science.1258137.
View
16.
Kim G, Kim W, Kim H, Lee S
. Machine learning applications in systems metabolic engineering. Curr Opin Biotechnol. 2019; 64:1-9.
DOI: 10.1016/j.copbio.2019.08.010.
View
17.
Yu K, Jung J, Ramzi A, Kim S, Park C, Han S
. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae. Appl Biochem Biotechnol. 2011; 166(4):856-65.
DOI: 10.1007/s12010-011-9475-9.
View
18.
Presnell K, Alper H
. Systems Metabolic Engineering Meets Machine Learning: A New Era for Data-Driven Metabolic Engineering. Biotechnol J. 2019; 14(9):e1800416.
DOI: 10.1002/biot.201800416.
View
19.
Zhou Y, Li G, Dong J, Xing X, Dai J, Zhang C
. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metab Eng. 2018; 47:294-302.
DOI: 10.1016/j.ymben.2018.03.020.
View
20.
Stanley D, Bandara A, Fraser S, Chambers P, Stanley G
. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol. 2010; 109(1):13-24.
DOI: 10.1111/j.1365-2672.2009.04657.x.
View