Zheng Y, Yu K, Lin J, Liang Z, Zhang Q, Li J
Nat Commun. 2025; 16(1):2511.
PMID: 40087285
DOI: 10.1038/s41467-025-57858-8.
Gan Q, Jiang T, Li C, Gong X, Zhang J, Desai B
Green Chem. 2025; 27(11):3064-3076.
PMID: 40013057
PMC: 11848710.
DOI: 10.1039/d4gc05694a.
Ahmad Z, Shareen , Ganie I, Firdaus F, Ramakrishnan M, Shahzad A
Plants (Basel). 2024; 13(15).
PMID: 39124289
PMC: 11313931.
DOI: 10.3390/plants13152171.
Chi J, Shu J, Li M, Mudappathi R, Jin Y, Lewis F
Trends Analyt Chem. 2024; 178.
PMID: 39071116
PMC: 11271759.
DOI: 10.1016/j.trac.2024.117852.
Liu Z, Ying J, Liu C
Biology (Basel). 2024; 13(5).
PMID: 38785816
PMC: 11117757.
DOI: 10.3390/biology13050334.
Automated in vivo enzyme engineering accelerates biocatalyst optimization.
Orsi E, Schada von Borzyskowski L, Noack S, Nikel P, Lindner S
Nat Commun. 2024; 15(1):3447.
PMID: 38658554
PMC: 11043082.
DOI: 10.1038/s41467-024-46574-4.
Metabolic engineering strategies for de novo biosynthesis of sterols and steroids in yeast.
Gu Y, Jiao X, Ye L, Yu H
Bioresour Bioprocess. 2024; 8(1):110.
PMID: 38650187
PMC: 10992410.
DOI: 10.1186/s40643-021-00460-9.
Predicting the effects of cultivation condition on gene regulation in by using deep learning.
Kwon M, Adidjaja J, Kim H
Comput Struct Biotechnol J. 2024; 21:2613-2620.
PMID: 38213890
PMC: 10781998.
DOI: 10.1016/j.csbj.2023.04.010.
Machine learning for metabolic pathway optimization: A review.
Cheng Y, Bi X, Xu Y, Liu Y, Li J, Du G
Comput Struct Biotechnol J. 2024; 21:2381-2393.
PMID: 38213889
PMC: 10781721.
DOI: 10.1016/j.csbj.2023.03.045.
Prediction of Thermostability of Enzymes Based on the Amino Acid Index (AAindex) Database and Machine Learning.
Li G, Jia L, Wang K, Sun T, Huang J
Molecules. 2023; 28(24).
PMID: 38138586
PMC: 10746113.
DOI: 10.3390/molecules28248097.
Predicting pathways for old and new metabolites through clustering.
Siddharth T, Lewis N
J Theor Biol. 2023; 578:111684.
PMID: 38048983
PMC: 11139542.
DOI: 10.1016/j.jtbi.2023.111684.
Artificial intelligence-driven systems engineering for next-generation plant-derived biopharmaceuticals.
Parthiban S, Vijeesh T, Gayathri T, Shanmugaraj B, Sharma A, Sathishkumar R
Front Plant Sci. 2023; 14:1252166.
PMID: 38034587
PMC: 10684705.
DOI: 10.3389/fpls.2023.1252166.
Biotechnological production of omega-3 fatty acids: current status and future perspectives.
Qin J, Kurt E, LBassi T, Sa L, Xie D
Front Microbiol. 2023; 14:1280296.
PMID: 38029217
PMC: 10662050.
DOI: 10.3389/fmicb.2023.1280296.
Data-Driven Synthetic Cell Factories Development for Industrial Biomanufacturing.
Shi Z, Liu P, Liao X, Mao Z, Zhang J, Wang Q
Biodes Res. 2023; 2022:9898461.
PMID: 37850146
PMC: 10521697.
DOI: 10.34133/2022/9898461.
Efforts to Minimise the Bacterial Genome as a Free-Living Growing System.
Aida H, Ying B
Biology (Basel). 2023; 12(9).
PMID: 37759570
PMC: 10525146.
DOI: 10.3390/biology12091170.
Optimizing Ethanol Production in at Ambient and Elevated Temperatures through Machine Learning-Guided Combinatorial Promoter Modifications.
Khamwachirapithak P, Sae-Tang K, Mhuantong W, Tanapongpipat S, Zhao X, Liu C
ACS Synth Biol. 2023; 12(10):2897-2908.
PMID: 37681736
PMC: 10594650.
DOI: 10.1021/acssynbio.3c00199.
Applications of artificial intelligence and machine learning in dynamic pathway engineering.
Merzbacher C, Oyarzun D
Biochem Soc Trans. 2023; 51(5):1871-1879.
PMID: 37656433
PMC: 10657174.
DOI: 10.1042/BST20221542.
Simulated Design-Build-Test-Learn Cycles for Consistent Comparison of Machine Learning Methods in Metabolic Engineering.
van Lent P, Schmitz J, Abeel T
ACS Synth Biol. 2023; 12(9):2588-2599.
PMID: 37616156
PMC: 10510747.
DOI: 10.1021/acssynbio.3c00186.
RespectM revealed metabolic heterogeneity powers deep learning for reshaping the DBTL cycle.
Meng X, Xu P, Tao F
iScience. 2023; 26(7):107069.
PMID: 37426353
PMC: 10329182.
DOI: 10.1016/j.isci.2023.107069.
Design of synthetic promoters for cyanobacteria with generative deep-learning model.
Seo E, Choi Y, Shin Y, Kim D, Lee J
Nucleic Acids Res. 2023; 51(13):7071-7082.
PMID: 37246641
PMC: 10359606.
DOI: 10.1093/nar/gkad451.