» Articles » PMID: 37667039

The Mesencephalic Locomotor Region Recruits V2a Reticulospinal Neurons to Drive Forward Locomotion in Larval Zebrafish

Abstract

The mesencephalic locomotor region (MLR) is a brain stem area whose stimulation triggers graded forward locomotion. How MLR neurons recruit downstream vsx2 (V2a) reticulospinal neurons (RSNs) is poorly understood. Here, to overcome this challenge, we uncovered the locus of MLR in transparent larval zebrafish and show that the MLR locus is distinct from the nucleus of the medial longitudinal fasciculus. MLR stimulations reliably elicit forward locomotion of controlled duration and frequency. MLR neurons recruit V2a RSNs via projections onto somata in pontine and retropontine areas, and onto dendrites in the medulla. High-speed volumetric imaging of neuronal activity reveals that strongly MLR-coupled RSNs are active for steering or forward swimming, whereas weakly MLR-coupled medullary RSNs encode the duration and frequency of the forward component. Our study demonstrates how MLR neurons recruit specific V2a RSNs to control the kinematics of forward locomotion and suggests conservation of the motor functions of V2a RSNs across vertebrates.

Citing Articles

Optogenetic interrogation of the lateral-line sensory system reveals mechanisms of pattern separation in the zebrafish brain.

Velez-Angel N, Lu S, Fabella B, Reagor C, Brown H, Vazquez Y bioRxiv. 2025; .

PMID: 39975109 PMC: 11839093. DOI: 10.1101/2025.02.07.637118.


Balancing central control and sensory feedback produces adaptable and robust locomotor patterns in a spiking, neuromechanical model of the salamander spinal cord.

Pazzaglia A, Bicanski A, Ferrario A, Arreguit J, Ryczko D, Ijspeert A PLoS Comput Biol. 2025; 21(1):e1012101.

PMID: 39836708 PMC: 11771899. DOI: 10.1371/journal.pcbi.1012101.


Uncovering multiscale structure in the variability of larval zebrafish navigation.

Sridhar G, Vergassola M, Marques J, Orger M, Costa A, Wyart C Proc Natl Acad Sci U S A. 2024; 121(47):e2410254121.

PMID: 39546569 PMC: 11588111. DOI: 10.1073/pnas.2410254121.


Evolutionarily conserved brainstem architecture enables gravity-guided vertical navigation.

Zhu Y, Gelnaw H, Auer F, Hamling K, Ehrlich D, Schoppik D PLoS Biol. 2024; 22(11):e3002902.

PMID: 39531487 PMC: 11584107. DOI: 10.1371/journal.pbio.3002902.


Mammalian genome research resources available from the National BioResource Project in Japan.

Mizuno-Iijima S, Kawamoto S, Asano M, Mashimo T, Wakana S, Nakamura K Mamm Genome. 2024; 35(4):497-523.

PMID: 39261329 PMC: 11522087. DOI: 10.1007/s00335-024-10063-2.


References
1.
Kiehn O . Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci. 2016; 17(4):224-38. PMC: 4844028. DOI: 10.1038/nrn.2016.9. View

2.
Grillner S, Wallen P, Saitoh K, Kozlov A, Robertson B . Neural bases of goal-directed locomotion in vertebrates--an overview. Brain Res Rev. 2007; 57(1):2-12. DOI: 10.1016/j.brainresrev.2007.06.027. View

3.
Ruder L, Arber S . Brainstem Circuits Controlling Action Diversification. Annu Rev Neurosci. 2019; 42:485-504. DOI: 10.1146/annurev-neuro-070918-050201. View

4.
Deliagina T, Zelenin P, Fagerstedt P, Grillner S, Orlovsky G . Activity of reticulospinal neurons during locomotion in the freely behaving lamprey. J Neurophysiol. 2000; 83(2):853-63. DOI: 10.1152/jn.2000.83.2.853. View

5.
Zelenin P . Reticulospinal neurons controlling forward and backward swimming in the lamprey. J Neurophysiol. 2011; 105(3):1361-71. DOI: 10.1152/jn.00887.2010. View