» Articles » PMID: 32393896

Brainstem Neurons That Command Mammalian Locomotor Asymmetries

Overview
Journal Nat Neurosci
Date 2020 May 13
PMID 32393896
Citations 59
Authors
Affiliations
Soon will be listed here.
Abstract

Descending command neurons instruct spinal networks to execute basic locomotor functions, such as gait and speed. The command functions for gait and speed are symmetric, implying that a separate unknown system directs asymmetric movements, including the ability to move left or right. In the present study, we report that Chx10-lineage reticulospinal neurons act to control the direction of locomotor movements in mammals. Chx10 neurons exhibit mainly ipsilateral projection, and their selective unilateral activation causes ipsilateral turning movements in freely moving mice. Unilateral inhibition of Chx10 neurons causes contralateral turning movements. Paired left-right motor recordings identified distinct mechanisms for directional movements mediated via limb and axial spinal circuits. Finally, we identify sensorimotor brain regions that project on to Chx10 reticulospinal neurons, and demonstrate that their unilateral activation can impart left-right directional commands. Together these data identify the descending motor system that commands left-right locomotor asymmetries in mammals.

Citing Articles

A brainstem map of orofacial rhythms.

Kaku H, Liu L, Gao R, West S, Liao S, Finkelstein A bioRxiv. 2025; .

PMID: 39975015 PMC: 11838403. DOI: 10.1101/2025.01.27.635041.


Bradykinesia and postural instability in a model of prodromal synucleinopathy with α-synuclein aggregation initiated in the gigantocellular nuclei.

Theologidis V, Ferreira S, Jensen N, Gomes Moreira D, Ahlgreen O, Hansen M Acta Neuropathol Commun. 2025; 13(1):32.

PMID: 39962601 PMC: 11834571. DOI: 10.1186/s40478-025-01948-7.


A cortico-subcortical loop for motor control via the pontine reticular formation.

Bosz E, Plattner V, Biro L, Kota K, Diana M, Acsady L Cell Rep. 2025; 44(2):115230.

PMID: 39847485 PMC: 11860761. DOI: 10.1016/j.celrep.2025.115230.


Balancing central control and sensory feedback produces adaptable and robust locomotor patterns in a spiking, neuromechanical model of the salamander spinal cord.

Pazzaglia A, Bicanski A, Ferrario A, Arreguit J, Ryczko D, Ijspeert A PLoS Comput Biol. 2025; 21(1):e1012101.

PMID: 39836708 PMC: 11771899. DOI: 10.1371/journal.pcbi.1012101.


A brain-wide map of descending inputs onto spinal V1 interneurons.

Chapman P, Kulkarni A, Trevisan A, Han K, Hinton J, Deltuvaite P Neuron. 2024; 113(4):524-538.e6.

PMID: 39719703 PMC: 11842218. DOI: 10.1016/j.neuron.2024.11.019.


References
1.
Grillner S . The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci. 2003; 4(7):573-86. DOI: 10.1038/nrn1137. View

2.
Kiehn O . Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci. 2016; 17(4):224-38. PMC: 4844028. DOI: 10.1038/nrn.2016.9. View

3.
Goulding M . Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci. 2009; 10(7):507-18. PMC: 2847453. DOI: 10.1038/nrn2608. View

4.
Brownstone R, Wilson J . Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Res Rev. 2007; 57(1):64-76. PMC: 5061561. DOI: 10.1016/j.brainresrev.2007.06.025. View

5.
Jordan L, Liu J, Hedlund P, Akay T, Pearson K . Descending command systems for the initiation of locomotion in mammals. Brain Res Rev. 2007; 57(1):183-91. DOI: 10.1016/j.brainresrev.2007.07.019. View