» Articles » PMID: 24027269

Lhx3-Chx10 Reticulospinal Neurons in Locomotor Circuits

Overview
Journal J Neurosci
Specialty Neurology
Date 2013 Sep 13
PMID 24027269
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Motor behaviors result from the interplay between the brain and the spinal cord. Reticulospinal neurons, situated between the supraspinal structures that initiate motor movements and the spinal cord that executes them, play key integrative roles in these behaviors. However, the molecular identities of mammalian reticular formation neurons that mediate motor behaviors have not yet been determined, thus limiting their study in health and disease. In the medullary reticular formation of the mouse, we identified neurons that express the transcription factors Lhx3 and/or Chx10, and demonstrate that these neurons form a significant component of glutamatergic reticulospinal pathways. Lhx3-positive medullary reticular formation neurons express Fos following a locomotor task in the adult, indicating that they are active during walking. Furthermore, they receive functional inputs from the mesencephalic locomotor region and have electrophysiological properties to support tonic repetitive firing, both of which are necessary for neurons that mediate the descending command for locomotion. Together, these results suggest that Lhx3/Chx10 medullary reticular formation neurons are involved in locomotion.

Citing Articles

Balancing central control and sensory feedback produces adaptable and robust locomotor patterns in a spiking, neuromechanical model of the salamander spinal cord.

Pazzaglia A, Bicanski A, Ferrario A, Arreguit J, Ryczko D, Ijspeert A PLoS Comput Biol. 2025; 21(1):e1012101.

PMID: 39836708 PMC: 11771899. DOI: 10.1371/journal.pcbi.1012101.


LHX3 promotes EMT in hepatoma cell through β-catenin/TCF4 pathway.

Xia J, Chen K, Wang J, Wang J, Fan Y, Li Q Med Oncol. 2024; 42(1):33.

PMID: 39702693 DOI: 10.1007/s12032-024-02585-1.


Molecular Organization of Autonomic, Respiratory, and Spinally-Projecting Neurons in the Mouse Ventrolateral Medulla.

Schwalbe D, Stornetta D, Abraham-Fan R, Souza G, Jalil M, Crook M J Neurosci. 2024; 44(31).

PMID: 38918066 PMC: 11293450. DOI: 10.1523/JNEUROSCI.2211-23.2024.


V2a neurons restore diaphragm function in mice following spinal cord injury.

Jensen V, Huffman E, Jalufka F, Pritchard A, Baumgartner S, Walling I Proc Natl Acad Sci U S A. 2024; 121(11):e2313594121.

PMID: 38442182 PMC: 10945804. DOI: 10.1073/pnas.2313594121.


Functional plasticity of glutamatergic neurons of medullary reticular nuclei after spinal cord injury in mice.

Lemieux M, Karimi N, Bretzner F Nat Commun. 2024; 15(1):1542.

PMID: 38378819 PMC: 10879492. DOI: 10.1038/s41467-024-45300-4.


References
1.
Noga B, Kettler J, Jordan L . Locomotion produced in mesencephalic cats by injections of putative transmitter substances and antagonists into the medial reticular formation and the pontomedullary locomotor strip. J Neurosci. 1988; 8(6):2074-86. PMC: 6569345. View

2.
Feng G, Mellor R, Bernstein M, Nguyen Q, Wallace M, Nerbonne J . Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000; 28(1):41-51. DOI: 10.1016/s0896-6273(00)00084-2. View

3.
Schwindt P, CRILL W . A persistent negative resistance in cat lumbar motoneurons. Brain Res. 1977; 120(1):173-8. DOI: 10.1016/0006-8993(77)90510-8. View

4.
Bar-Gad I, Kagan I, SHIK M . Behavior of hindbrain neurons during the transition from rest to evoked locomotion in a newt. Prog Brain Res. 2000; 123:285-94. DOI: 10.1016/s0079-6123(08)62864-2. View

5.
Kiehn O . Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci. 2006; 29:279-306. DOI: 10.1146/annurev.neuro.29.051605.112910. View