» Articles » PMID: 25327632

Transparent and Flexible Low Noise Graphene Electrodes for Simultaneous Electrophysiology and Neuroimaging

Overview
Journal Nat Commun
Specialty Biology
Date 2014 Oct 21
PMID 25327632
Citations 136
Authors
Affiliations
Soon will be listed here.
Abstract

Calcium imaging is a versatile experimental approach capable of resolving single neurons with single-cell spatial resolution in the brain. Electrophysiological recordings provide high temporal, but limited spatial resolution, because of the geometrical inaccessibility of the brain. An approach that integrates the advantages of both techniques could provide new insights into functions of neural circuits. Here, we report a transparent, flexible neural electrode technology based on graphene, which enables simultaneous optical imaging and electrophysiological recording. We demonstrate that hippocampal slices can be imaged through transparent graphene electrodes by both confocal and two-photon microscopy without causing any light-induced artefacts in the electrical recordings. Graphene electrodes record high-frequency bursting activity and slow synaptic potentials that are hard to resolve by multicellular calcium imaging. This transparent electrode technology may pave the way for high spatio-temporal resolution electro-optic mapping of the dynamic neuronal activity.

Citing Articles

Transparent, flexible graphene-ITO-based neural microelectrodes for simultaneous electrophysiology recording and calcium imaging of intracortical neural activity in freely moving mice.

Yuan M, Li F, Xue F, Wang Y, Li B, Tang R Microsyst Nanoeng. 2025; 11(1):32.

PMID: 39994180 PMC: 11850855. DOI: 10.1038/s41378-025-00873-y.


Touch-evoked traveling waves establish a translaminar spacetime code.

Gonzales D, Khan H, Keri H, Yadav S, Steward C, Muller L Sci Adv. 2025; 11(5):eadr4038.

PMID: 39889002 PMC: 11784861. DOI: 10.1126/sciadv.adr4038.


A nanowell-based MoS neuroelectrode for high-sensitivity neural recording.

Liu S, Sun X, Wang Y, Liu K, Liu R, Zhang Y iScience. 2024; 27(10):110949.

PMID: 39391733 PMC: 11465046. DOI: 10.1016/j.isci.2024.110949.


Graphene Microelectrode Arrays, 4D Structured Illumination Microscopy, and a Machine Learning Spike Sorting Algorithm Permit the Analysis of Ultrastructural Neuronal Changes During Neuronal Signaling in a Model of Niemann-Pick Disease Type C.

Lu M, Hui E, Brockhoff M, Trauble J, Fernandez-Villegas A, Burton O Adv Sci (Weinh). 2024; 11(44):e2402967.

PMID: 39340823 PMC: 11600250. DOI: 10.1002/advs.202402967.


Transparent MXene Microelectrode Arrays for Multimodal Mapping of Neural Dynamics.

Shankar S, Chen Y, Averbeck S, Hendricks Q, Murphy B, Ferleger B Adv Healthc Mater. 2024; 14(4):e2402576.

PMID: 39328088 PMC: 11804840. DOI: 10.1002/adhm.202402576.


References
1.
Ledochowitsch P, Olivero E, Blanche T, Maharbiz M . A transparent μECoG array for simultaneous recording and optogenetic stimulation. Annu Int Conf IEEE Eng Med Biol Soc. 2012; 2011:2937-40. DOI: 10.1109/IEMBS.2011.6090808. View

2.
Timko B, Cohen-Karni T, Yu G, Qing Q, Tian B, Lieber C . Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 2009; 9(2):914-8. PMC: 2663853. DOI: 10.1021/nl900096z. View

3.
Mannoor M, Tao H, Clayton J, Sengupta A, Kaplan D, Naik R . Graphene-based wireless bacteria detection on tooth enamel. Nat Commun. 2012; 3:763. DOI: 10.1038/ncomms1767. View

4.
Wu F, Stark E, Im M, Cho I, Yoon E, Buzsaki G . An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J Neural Eng. 2013; 10(5):056012. PMC: 4056669. DOI: 10.1088/1741-2560/10/5/056012. View

5.
Dombeck D, Harvey C, Tian L, Looger L, Tank D . Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci. 2010; 13(11):1433-40. PMC: 2967725. DOI: 10.1038/nn.2648. View