» Articles » PMID: 37591828

Single-cell Genomics Improves the Discovery of Risk Variants and Genes of Atrial Fibrillation

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Aug 17
PMID 37591828
Authors
Affiliations
Soon will be listed here.
Abstract

Genome-wide association studies (GWAS) have linked hundreds of loci to cardiac diseases. However, in most loci the causal variants and their target genes remain unknown. We developed a combined experimental and analytical approach that integrates single cell epigenomics with GWAS to prioritize risk variants and genes. We profiled accessible chromatin in single cells obtained from human hearts and leveraged the data to study genetics of Atrial Fibrillation (AF), the most common cardiac arrhythmia. Enrichment analysis of AF risk variants using cell-type-resolved open chromatin regions (OCRs) implicated cardiomyocytes as the main mediator of AF risk. We then performed statistical fine-mapping, leveraging the information in OCRs, and identified putative causal variants in 122 AF-associated loci. Taking advantage of the fine-mapping results, our novel statistical procedure for gene discovery prioritized 46 high-confidence risk genes, highlighting transcription factors and signal transduction pathways important for heart development. In summary, our analysis provides a comprehensive map of AF risk variants and genes, and a general framework to integrate single-cell genomics with genetic studies of complex traits.

Citing Articles

Integration of functional genomics and statistical fine-mapping systematically characterizes adult-onset and childhood-onset asthma genetic associations.

Zhong X, Mitchell R, Billstrand C, Thompson E, Sakabe N, Aneas I medRxiv. 2025; .

PMID: 40034789 PMC: 11875274. DOI: 10.1101/2025.02.11.25322088.


Genetic and Molecular Underpinnings of Atrial Fibrillation.

Sweat M, Pu W NPJ Cardiovasc Health. 2025; 1.

PMID: 39867228 PMC: 11759492. DOI: 10.1038/s44325-024-00035-5.


Atrial fibrillation variant-to-gene prioritization through cross-ancestry eQTL and single-nucleus multiomic analyses.

Leblanc F, Jin X, Kang K, Lee C, Xu J, Xuan L iScience. 2024; 27(9):110660.

PMID: 39262787 PMC: 11388022. DOI: 10.1016/j.isci.2024.110660.


Beyond the Heartbeat: Single-Cell Omics Redefining Cardiovascular Research.

Seeler S, Arnarsson K, Dressen M, Krane M, Doppler S Curr Cardiol Rep. 2024; 26(11):1183-1196.

PMID: 39158785 DOI: 10.1007/s11886-024-02117-3.


Genetics, transcriptomics, metagenomics, and metabolomics in the pathogenesis and prediction of atrial fibrillation.

Linna-Kuosmanen S, Vuori M, Kiviniemi T, Palmu J, Niiranen T Eur Heart J Suppl. 2024; 26(Suppl 4):iv33-iv40.

PMID: 39099578 PMC: 11292413. DOI: 10.1093/eurheartjsupp/suae072.


References
1.
Selewa A, Luo K, Wasney M, Smith L, Sun X, Tang C . Single-cell genomics improves the discovery of risk variants and genes of atrial fibrillation. Nat Commun. 2023; 14(1):4999. PMC: 10435551. DOI: 10.1038/s41467-023-40505-5. View

2.
Foulquier S, Daskalopoulos E, Lluri G, Hermans K, Deb A, Blankesteijn W . WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev. 2017; 70(1):68-141. PMC: 6040091. DOI: 10.1124/pr.117.013896. View

3.
Hocker J, Poirion O, Zhu F, Buchanan J, Zhang K, Chiou J . Cardiac cell type-specific gene regulatory programs and disease risk association. Sci Adv. 2021; 7(20). PMC: 8121433. DOI: 10.1126/sciadv.abf1444. View

4.
Roselli C, Rienstra M, Ellinor P . Genetics of Atrial Fibrillation in 2020: GWAS, Genome Sequencing, Polygenic Risk, and Beyond. Circ Res. 2020; 127(1):21-33. PMC: 7388073. DOI: 10.1161/CIRCRESAHA.120.316575. View

5.
Kanehisa M, Goto S . KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999; 28(1):27-30. PMC: 102409. DOI: 10.1093/nar/28.1.27. View