» Articles » PMID: 37580596

In Vivo Screening Characterizes Chromatin Factor Functions During Normal and Malignant Hematopoiesis

Abstract

Cellular differentiation requires extensive alterations in chromatin structure and function, which is elicited by the coordinated action of chromatin and transcription factors. By contrast with transcription factors, the roles of chromatin factors in differentiation have not been systematically characterized. Here, we combine bulk ex vivo and single-cell in vivo CRISPR screens to characterize the role of chromatin factor families in hematopoiesis. We uncover marked lineage specificities for 142 chromatin factors, revealing functional diversity among related chromatin factors (i.e. barrier-to-autointegration factor subcomplexes) as well as shared roles for unrelated repressive complexes that restrain excessive myeloid differentiation. Using epigenetic profiling, we identify functional interactions between lineage-determining transcription factors and several chromatin factors that explain their lineage dependencies. Studying chromatin factor functions in leukemia, we show that leukemia cells engage homeostatic chromatin factor functions to block differentiation, generating specific chromatin factor-transcription factor interactions that might be therapeutically targeted. Together, our work elucidates the lineage-determining properties of chromatin factors across normal and malignant hematopoiesis.

Citing Articles

DECA: harnessing interpretable transformer model for cellular deconvolution of chromatin accessibility profile.

Luo S, Zhu M, Lin L, Xie J, Lin S, Chen Y Brief Bioinform. 2025; 26(1).

PMID: 39987573 PMC: 11847511. DOI: 10.1093/bib/bbaf069.


scTrends: A living review of commercial single-cell and spatial 'omic technologies.

De Jonghe J, Opzoomer J, Vilas-Zornoza A, Nilges B, Crane P, Vicari M Cell Genom. 2024; 4(12):100723.

PMID: 39667347 PMC: 11701258. DOI: 10.1016/j.xgen.2024.100723.


A platform for multimodal pooled genetic screens reveals regulators of liver function.

Saunders R, Allen W, Pan X, Sandhu J, Lu J, Lau T bioRxiv. 2024; .

PMID: 39605605 PMC: 11601512. DOI: 10.1101/2024.11.18.624217.


In vivo perturb-seq of cancer and microenvironment cells dissects oncologic drivers and radiotherapy responses in glioblastoma.

Liu S, Zou C, Pak J, Morse A, Pang D, Casey-Clyde T Genome Biol. 2024; 25(1):256.

PMID: 39375777 PMC: 11457336. DOI: 10.1186/s13059-024-03404-6.


Associating transcription factors to single-cell trajectories with DREAMIT.

Maulding N, Seninge L, Stuart J Genome Biol. 2024; 25(1):220.

PMID: 39143494 PMC: 11323358. DOI: 10.1186/s13059-024-03368-7.


References
1.
Stadhouders R, Filion G, Graf T . Transcription factors and 3D genome conformation in cell-fate decisions. Nature. 2019; 569(7756):345-354. DOI: 10.1038/s41586-019-1182-7. View

2.
Ding Y, Liu Z, Liu F . Transcriptional and epigenetic control of hematopoietic stem cell fate decisions in vertebrates. Dev Biol. 2021; 475:156-164. DOI: 10.1016/j.ydbio.2021.03.003. View

3.
Al-Mousawi J, Boskovic A . Transcriptional and epigenetic control of early life cell fate decisions. Curr Opin Oncol. 2022; 34(2):148-154. DOI: 10.1097/CCO.0000000000000814. View

4.
Valencia A, Kadoch C . Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol. 2019; 21(2):152-161. PMC: 6755910. DOI: 10.1038/s41556-018-0258-1. View

5.
Laurenti E, Gottgens B . From haematopoietic stem cells to complex differentiation landscapes. Nature. 2018; 553(7689):418-426. PMC: 6555401. DOI: 10.1038/nature25022. View