» Articles » PMID: 37578984

In-silico and In-vitro Morphometric Analysis of Intestinal Organoids

Overview
Specialty Biology
Date 2023 Aug 14
PMID 37578984
Authors
Affiliations
Soon will be listed here.
Abstract

Organoids offer a powerful model to study cellular self-organisation, the growth of specific tissue morphologies in-vitro, and to assess potential medical therapies. However, the intrinsic mechanisms of these systems are not entirely understood yet, which can result in variability of organoids due to differences in culture conditions and basement membrane extracts used. Improving the standardisation of organoid cultures is essential for their implementation in clinical protocols. Developing tools to assess and predict the behaviour of these systems may produce a more robust and standardised biological model to perform accurate clinical studies. Here, we developed an algorithm to automate crypt-like structure counting on intestinal organoids in both in-vitro and in-silico images. In addition, we modified an existing two-dimensional agent-based mathematical model of intestinal organoids to better describe the system physiology, and evaluated its ability to replicate budding structures compared to new experimental data we generated. The crypt-counting algorithm proved useful in approximating the average number of budding structures found in our in-vitro intestinal organoid culture images on days 3 and 7 after seeding. Our changes to the in-silico model maintain the potential to produce simulations that replicate the number of budding structures found on days 5 and 7 of in-vitro data. The present study aims to aid in quantifying key morphological structures and provide a method to compare both in-vitro and in-silico experiments. Our results could be extended later to 3D in-silico models.

Citing Articles

Understanding patient-derived tumor organoid growth through an integrated imaging and mathematical modeling framework.

Gunnarsson E, Kim S, Choi B, Schmid J, Kaura K, Lenz H PLoS Comput Biol. 2024; 20(8):e1012256.

PMID: 39093897 PMC: 11324155. DOI: 10.1371/journal.pcbi.1012256.

References
1.
Waters S, Schumacher L, El Haj A . Regenerative medicine meets mathematical modelling: developing symbiotic relationships. NPJ Regen Med. 2021; 6(1):24. PMC: 8042047. DOI: 10.1038/s41536-021-00134-2. View

2.
Li Y, Muffat J, Omer A, Bosch I, Lancaster M, Sur M . Induction of Expansion and Folding in Human Cerebral Organoids. Cell Stem Cell. 2017; 20(3):385-396.e3. PMC: 6461394. DOI: 10.1016/j.stem.2016.11.017. View

3.
Itzkovitz S, Blat I, Jacks T, Clevers H, van Oudenaarden A . Optimality in the development of intestinal crypts. Cell. 2012; 148(3):608-19. PMC: 3696183. DOI: 10.1016/j.cell.2011.12.025. View

4.
Berger E, Magliaro C, Paczia N, Monzel A, Antony P, Linster C . Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip. 2018; 18(20):3172-3183. DOI: 10.1039/c8lc00206a. View

5.
Hof L, Moreth T, Koch M, Liebisch T, Kurtz M, Tarnick J . Long-term live imaging and multiscale analysis identify heterogeneity and core principles of epithelial organoid morphogenesis. BMC Biol. 2021; 19(1):37. PMC: 7903752. DOI: 10.1186/s12915-021-00958-w. View