» Articles » PMID: 37559123

LAST-seq: Single-cell RNA Sequencing by Direct Amplification of Single-stranded RNA Without Prior Reverse Transcription and Second-strand Synthesis

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2023 Aug 9
PMID 37559123
Authors
Affiliations
Soon will be listed here.
Abstract

Existing single-cell RNA sequencing (scRNA-seq) methods rely on reverse transcription (RT) and second-strand synthesis (SSS) to convert single-stranded RNA into double-stranded DNA prior to amplification, with the limited RT/SSS efficiency compromising RNA detectability. Here, we develop a new scRNA-seq method, Linearly Amplified Single-stranded-RNA-derived Transcriptome sequencing (LAST-seq), which directly amplifies the original single-stranded RNA molecules without prior RT/SSS. LAST-seq offers a high single-molecule capture efficiency and a low level of technical noise for single-cell transcriptome analyses. Using LAST-seq, we characterize transcriptional bursting kinetics in human cells, revealing a role of topologically associating domains in transcription regulation.

Citing Articles

Generalization of the sci-L3 method to achieve high-throughput linear amplification for replication template strand sequencing, genome conformation capture, and the joint profiling of RNA and chromatin accessibility.

Chovanec P, Yin Y Nucleic Acids Res. 2025; 53(4).

PMID: 39997216 PMC: 11851118. DOI: 10.1093/nar/gkaf101.


Transcriptome and Temporal Transcriptome Analyses in Single Cells.

Lyu J, Chen C Int J Mol Sci. 2024; 25(23).

PMID: 39684556 PMC: 11640990. DOI: 10.3390/ijms252312845.


Linearly Amplified Single-Stranded RNA-Derived Transcriptome Sequencing (LAST-seq).

Lyu J, Chen C Bio Protoc. 2024; 14(11):e4998.

PMID: 38873015 PMC: 11166533. DOI: 10.21769/BioProtoc.4998.


LAST-seq: single-cell RNA sequencing by direct amplification of single-stranded RNA without prior reverse transcription and second-strand synthesis.

Lyu J, Chen C Genome Biol. 2023; 24(1):184.

PMID: 37559123 PMC: 10413806. DOI: 10.1186/s13059-023-03025-5.

References
1.
Lenstra T, Rodriguez J, Chen H, Larson D . Transcription Dynamics in Living Cells. Annu Rev Biophys. 2016; 45:25-47. PMC: 6300980. DOI: 10.1146/annurev-biophys-062215-010838. View

2.
Robinson J, Turner D, Durand N, Thorvaldsdottir H, Mesirov J, Aiden E . Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data. Cell Syst. 2018; 6(2):256-258.e1. PMC: 6047755. DOI: 10.1016/j.cels.2018.01.001. View

3.
Sanborn A, Rao S, Huang S, Durand N, Huntley M, Jewett A . Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A. 2015; 112(47):E6456-65. PMC: 4664323. DOI: 10.1073/pnas.1518552112. View

4.
Legnini I, Alles J, Karaiskos N, Ayoub S, Rajewsky N . FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nat Methods. 2019; 16(9):879-886. DOI: 10.1038/s41592-019-0503-y. View

5.
Cuartero S, Weiss F, Dharmalingam G, Guo Y, Ing-Simmons E, Masella S . Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat Immunol. 2018; 19(9):932-941. PMC: 6195188. DOI: 10.1038/s41590-018-0184-1. View