» Articles » PMID: 37403358

Genome Editing in the Mouse Brain with Minimally Immunogenic Cas9 RNPs

Abstract

Transient delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) into the central nervous system (CNS) for therapeutic genome editing could avoid limitations of viral vector-based delivery including cargo capacity, immunogenicity, and cost. Here, we tested the ability of cell-penetrant Cas9 RNPs to edit the mouse striatum when introduced using a convection-enhanced delivery system. These transient Cas9 RNPs showed comparable editing of neurons and reduced adaptive immune responses relative to one formulation of Cas9 delivered using AAV serotype 9. The production of ultra-low endotoxin Cas9 protein manufactured at scale further improved innate immunity. We conclude that injection-based delivery of minimally immunogenic CRISPR genome editing RNPs into the CNS provides a valuable alternative to virus-mediated genome editing.

Citing Articles

Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) in primary human immune cells and hematopoietic stem cells.

Sahu S, Castro M, Muldoon J, Asija K, Wyman S, Krishnappa N Nat Protoc. 2025; .

PMID: 40032999 DOI: 10.1038/s41596-025-01154-8.


Non-Invasive Delivery of CRISPR/Cas9 Ribonucleoproteins (Cas9 RNPs) into Cells via Nanoparticles for Membrane Transport.

Tashima T Pharmaceutics. 2025; 17(2).

PMID: 40006568 PMC: 11859894. DOI: 10.3390/pharmaceutics17020201.


Widespread Gene Editing in the Brain via In Utero Delivery of mRNA Using Acid-Degradable Lipid Nanoparticles.

Gao K, Han H, Cranick M, Zhao S, Xu S, Yin B ACS Nano. 2024; 18(44):30293-30306.

PMID: 39445691 PMC: 11544762. DOI: 10.1021/acsnano.4c05169.


Gene therapy for CNS disorders: modalities, delivery and translational challenges.

Gao J, Gunasekar S, Xia Z, Shalin K, Jiang C, Chen H Nat Rev Neurosci. 2024; 25(8):553-572.

PMID: 38898231 DOI: 10.1038/s41583-024-00829-7.


Advances and challenges in modeling inherited peripheral neuropathies using iPSCs.

Van Lent J, Prior R, Perez Siles G, Cutrupi A, Kennerson M, Vangansewinkel T Exp Mol Med. 2024; 56(6):1348-1364.

PMID: 38825644 PMC: 11263568. DOI: 10.1038/s12276-024-01250-x.


References
1.
Oura S, Noda T, Morimura N, Hitoshi S, Nishimasu H, Nagai Y . Precise CAG repeat contraction in a Huntington's Disease mouse model is enabled by gene editing with SpCas9-NG. Commun Biol. 2021; 4(1):771. PMC: 8222283. DOI: 10.1038/s42003-021-02304-w. View

2.
Liu J, Gaj T, Wallen M, Barbas 3rd C . Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering. Mol Ther Nucleic Acids. 2015; 4:e232. PMC: 4354341. DOI: 10.1038/mtna.2015.6. View

3.
Doudna J . The promise and challenge of therapeutic genome editing. Nature. 2020; 578(7794):229-236. PMC: 8992613. DOI: 10.1038/s41586-020-1978-5. View

4.
Tsai S, Nguyen N, Malagon-Lopez J, Topkar V, Aryee M, Joung J . CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods. 2017; 14(6):607-614. PMC: 5924695. DOI: 10.1038/nmeth.4278. View

5.
Hadaczek P, Kohutnicka M, Krauze M, Bringas J, Pivirotto P, Cunningham J . Convection-enhanced delivery of adeno-associated virus type 2 (AAV2) into the striatum and transport of AAV2 within monkey brain. Hum Gene Ther. 2006; 17(3):291-302. DOI: 10.1089/hum.2006.17.291. View