» Articles » PMID: 29713083

Accurate Detection of Complex Structural Variations Using Single-molecule Sequencing

Overview
Journal Nat Methods
Date 2018 May 2
PMID 29713083
Citations 746
Authors
Affiliations
Soon will be listed here.
Abstract

Structural variations are the greatest source of genetic variation, but they remain poorly understood because of technological limitations. Single-molecule long-read sequencing has the potential to dramatically advance the field, although high error rates are a challenge with existing methods. Addressing this need, we introduce open-source methods for long-read alignment (NGMLR; https://github.com/philres/ngmlr ) and structural variant identification (Sniffles; https://github.com/fritzsedlazeck/Sniffles ) that provide unprecedented sensitivity and precision for variant detection, even in repeat-rich regions and for complex nested events that can have substantial effects on human health. In several long-read datasets, including healthy and cancerous human genomes, we discovered thousands of novel variants and categorized systematic errors in short-read approaches. NGMLR and Sniffles can automatically filter false events and operate on low-coverage data, thereby reducing the high costs that have hindered the application of long reads in clinical and research settings.

Citing Articles

Benchmarking long-read structural variant calling tools and combinations for detecting somatic variants in cancer genomes.

Aydin S, Yilmaz K, Acar A Sci Rep. 2025; 15(1):8707.

PMID: 40082509 PMC: 11906795. DOI: 10.1038/s41598-025-92750-x.


Systematic benchmarking of tools for structural variation detection using short- and long-read sequencing data in pigs.

He S, Song B, Tang Y, Qu X, Li X, Yang X iScience. 2025; 28(3):111983.

PMID: 40060913 PMC: 11889634. DOI: 10.1016/j.isci.2025.111983.


Characterizing the Rates and Patterns of De Novo Germline Mutations in the Aye-Aye (Daubentonia madagascariensis).

Versoza C, Ehmke E, Jensen J, Pfeifer S Mol Biol Evol. 2025; 42(3).

PMID: 40048663 PMC: 11884812. DOI: 10.1093/molbev/msaf034.


Chromosome-scale haploid genome assembly of Durio zibethinus KanYao.

Ji X, Zhong Y, Zheng D, Xie S, Shi M, Wang X Sci Data. 2025; 12(1):384.

PMID: 40044694 PMC: 11882774. DOI: 10.1038/s41597-025-04656-y.


Impacts of reproductive systems on grapevine genome and breeding.

Xiao H, Wang Y, Liu W, Shi X, Huang S, Cao S Nat Commun. 2025; 16(1):2031.

PMID: 40032836 PMC: 11876636. DOI: 10.1038/s41467-025-56817-7.


References
1.
English A, Salerno W, Reid J . PBHoney: identifying genomic variants via long-read discordance and interrupted mapping. BMC Bioinformatics. 2014; 15:180. PMC: 4082283. DOI: 10.1186/1471-2105-15-180. View

2.
Huddleston J, Chaisson M, Steinberg K, Warren W, Hoekzema K, Gordon D . Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 2016; 27(5):677-685. PMC: 5411763. DOI: 10.1101/gr.214007.116. View

3.
Carvalho C, Lupski J . Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet. 2016; 17(4):224-38. PMC: 4827625. DOI: 10.1038/nrg.2015.25. View

4.
Macintyre G, Ylstra B, Brenton J . Sequencing Structural Variants in Cancer for Precision Therapeutics. Trends Genet. 2016; 32(9):530-542. DOI: 10.1016/j.tig.2016.07.002. View

5.
Zook J, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W . Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat Biotechnol. 2014; 32(3):246-51. DOI: 10.1038/nbt.2835. View