» Articles » PMID: 37386189

MultiVI: Deep Generative Model for the Integration of Multimodal Data

Overview
Journal Nat Methods
Date 2023 Jun 29
PMID 37386189
Authors
Affiliations
Soon will be listed here.
Abstract

Jointly profiling the transcriptome, chromatin accessibility and other molecular properties of single cells offers a powerful way to study cellular diversity. Here we present MultiVI, a probabilistic model to analyze such multiomic data and leverage it to enhance single-modality datasets. MultiVI creates a joint representation that allows an analysis of all modalities included in the multiomic input data, even for cells for which one or more modalities are missing. It is available at scvi-tools.org .

Citing Articles

Infusing structural assumptions into dimensionality reduction for single-cell RNA sequencing data to identify small gene sets.

Hackenberg M, Brunn N, Vogel T, Binder H Commun Biol. 2025; 8(1):414.

PMID: 40069486 PMC: 11897155. DOI: 10.1038/s42003-025-07872-9.


Combining single-cell ATAC and RNA sequencing for supervised cell annotation.

Gill J, Dasgupta A, Manry B, Markuzon N BMC Bioinformatics. 2025; 26(1):67.

PMID: 40011801 PMC: 11863512. DOI: 10.1186/s12859-025-06084-6.


Cell signaling pathways discovery from multi-modal data.

He C, Simpson C, Cossentino I, Zhang B, Tkachev S, Eddins D bioRxiv. 2025; .

PMID: 39975141 PMC: 11839107. DOI: 10.1101/2025.02.06.636961.


EpiFoundation: A Foundation Model for Single-Cell ATAC-seq via Peak-to-Gene Alignment.

Wu J, Wan C, Ji Z, Zhou Y, Hou W bioRxiv. 2025; .

PMID: 39975086 PMC: 11839112. DOI: 10.1101/2025.02.05.636688.


scCobra allows contrastive cell embedding learning with domain adaptation for single cell data integration and harmonization.

Zhao B, Song K, Wei D, Xiong Y, Ding J Commun Biol. 2025; 8(1):233.

PMID: 39948393 PMC: 11825689. DOI: 10.1038/s42003-025-07692-x.


References
1.
Tasic B, Menon V, Nguyen T, Kim T, Jarsky T, Yao Z . Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci. 2016; 19(2):335-46. PMC: 4985242. DOI: 10.1038/nn.4216. View

2.
Buenrostro J, Wu B, Chang H, Greenleaf W . ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol. 2015; 109:21.29.1-21.29.9. PMC: 4374986. DOI: 10.1002/0471142727.mb2129s109. View

3.
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N . mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009; 6(5):377-82. DOI: 10.1038/nmeth.1315. View

4.
Jaitin D, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I . Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014; 343(6172):776-9. PMC: 4412462. DOI: 10.1126/science.1247651. View

5.
Buenrostro J, Wu B, Litzenburger U, Ruff D, Gonzales M, Snyder M . Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015; 523(7561):486-90. PMC: 4685948. DOI: 10.1038/nature14590. View