» Articles » PMID: 37351621

Enhanced Mitochondrial G-quadruplex Formation Impedes Replication Fork Progression Leading to MtDNA Loss in Human Cells

Abstract

Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.

Citing Articles

Organelle-Specific Thiochromenocarbazole Imide Derivative as a Heavy-Atom-Free Type I Photosensitizer for Biomolecule-Triggered Image-Guided Photodynamic Therapy.

Saczuk K, Kassem A, Dudek M, Sanchez D, Khrouz L, Allain M J Phys Chem Lett. 2025; 16(9):2273-2282.

PMID: 39988904 PMC: 11891978. DOI: 10.1021/acs.jpclett.5c00136.


DNA repair pathways in the mitochondria.

King D, Copeland W DNA Repair (Amst). 2025; 146:103814.

PMID: 39914164 PMC: 11848857. DOI: 10.1016/j.dnarep.2025.103814.


A subcellular selective APEX2-based proximity labeling used for identifying mitochondrial G-quadruplex DNA binding proteins.

Wang X, Qin G, Yang J, Zhao C, Ren J, Qu X Nucleic Acids Res. 2024; 53(1.

PMID: 39718986 PMC: 11724306. DOI: 10.1093/nar/gkae1259.


G-quadruplex propensity in , and Denisovans mitochondrial genomes.

Brazda V, Sislerova L, Cucchiarini A, Mergny J NAR Genom Bioinform. 2024; 6(2):lqae060.

PMID: 38817800 PMC: 11137754. DOI: 10.1093/nargab/lqae060.


Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation.

Bernardino Gomes T, Vincent A, Menger K, Stewart J, Nicholls T Biochem J. 2024; 481(11):683-715.

PMID: 38804971 PMC: 11346376. DOI: 10.1042/BCJ20230262.


References
1.
Tyynismaa H, Sembongi H, Bokori-Brown M, Granycome C, Ashley N, Poulton J . Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum Mol Genet. 2004; 13(24):3219-27. DOI: 10.1093/hmg/ddh342. View

2.
Wanrooij S, Luoma P, Van Goethem G, Van Broeckhoven C, Suomalainen A, Spelbrink J . Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res. 2004; 32(10):3053-64. PMC: 434440. DOI: 10.1093/nar/gkh634. View

3.
Pietras Z, Wojcik M, Borowski L, Szewczyk M, Kulinski T, Cysewski D . Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria. Nat Commun. 2018; 9(1):2558. PMC: 6028389. DOI: 10.1038/s41467-018-05007-9. View

4.
Song J, Herrmann J, Becker T . Quality control of the mitochondrial proteome. Nat Rev Mol Cell Biol. 2020; 22(1):54-70. DOI: 10.1038/s41580-020-00300-2. View

5.
Tarsounas M, Tijsterman M . Genomes and G-quadruplexes: for better or for worse. J Mol Biol. 2013; 425(23):4782-9. DOI: 10.1016/j.jmb.2013.09.026. View