» Articles » PMID: 37347539

Development of Bright Red-shifted MiRFP704nano Using Structural Analysis of MiRFPnano Proteins

Overview
Journal Protein Sci
Specialty Biochemistry
Date 2023 Jun 22
PMID 37347539
Authors
Affiliations
Soon will be listed here.
Abstract

We recently converted the GAF domain of NpR3784 cyanobacteriochrome into near-infrared (NIR) fluorescent proteins (FPs). Unlike cyanobacterichrome, which incorporates phycocyanobilin tetrapyrrole, engineered NIR FPs bind biliverdin abundant in mammalian cells, thus being the smallest scaffold for it. Here, we determined the crystal structure of the brightest blue-shifted protein of the series, miRFP670nano3, at 1.8 Å resolution, characterized its chromophore environment and explained the molecular basis of its spectral properties. Using the determined structure, we have rationally designed a red-shifted NIR FP, termed miRFP704nano, with excitation at 680 nm and emission at 704 nm. miRFP704nano exhibits a small size of 17 kDa, enhanced molecular brightness, photostability and pH-stability. miRFP704nano performs well in various protein fusions in live mammalian cells and should become a versatile genetically-encoded NIR probe for multiplexed imaging across spatial scales in different modalities.

Citing Articles

High Fluorescence of Phytochromes Does Not Require Chromophore Protonation.

Katz S, Phan H, Rieder F, Seifert F, Pietzsch M, Laufer J Molecules. 2024; 29(20).

PMID: 39459316 PMC: 11510734. DOI: 10.3390/molecules29204948.


Destabilized near-infrared fluorescent nanobodies enable background-free targeting of GFP-based biosensors for imaging and manipulation.

Barykina N, Carey E, Oliinyk O, Nimmerjahn A, Verkhusha V Nat Commun. 2024; 15(1):7788.

PMID: 39242569 PMC: 11379940. DOI: 10.1038/s41467-024-51857-x.


Cyanobacteriochromes: A Rainbow of Photoreceptors.

Rockwell N, Lagarias J Annu Rev Microbiol. 2024; 78(1):61-81.

PMID: 38848579 PMC: 11578781. DOI: 10.1146/annurev-micro-041522-094613.


Development of bright red-shifted miRFP704nano using structural analysis of miRFPnano proteins.

Oliinyk O, Pletnev S, Baloban M, Verkhusha V Protein Sci. 2023; 32(8):e4709.

PMID: 37347539 PMC: 10357936. DOI: 10.1002/pro.4709.

References
1.
Lehtivuori H, Bhattacharya S, Angenent-Mari N, Satyshur K, Forest K . Removal of Chromophore-Proximal Polar Atoms Decreases Water Content and Increases Fluorescence in a Near Infrared Phytofluor. Front Mol Biosci. 2015; 2:65. PMC: 4658570. DOI: 10.3389/fmolb.2015.00065. View

2.
Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A . NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife. 2016; 5. PMC: 4985285. DOI: 10.7554/eLife.16228. View

3.
Oliinyk O, Baloban M, Clark C, Carey E, Pletnev S, Nimmerjahn A . Single-domain near-infrared protein provides a scaffold for antigen-dependent fluorescent nanobodies. Nat Methods. 2022; 19(6):740-750. PMC: 9189029. DOI: 10.1038/s41592-022-01467-6. View

4.
Oliinyk O, Ma C, Pletnev S, Baloban M, Taboada C, Sheng H . Deep-tissue SWIR imaging using rationally designed small red-shifted near-infrared fluorescent protein. Nat Methods. 2022; 20(1):70-74. PMC: 10725253. DOI: 10.1038/s41592-022-01683-0. View

5.
Yu D, Baird M, Allen J, Howe E, Klassen M, Reade A . A naturally monomeric infrared fluorescent protein for protein labeling in vivo. Nat Methods. 2015; 12(8):763-5. PMC: 4521985. DOI: 10.1038/nmeth.3447. View