» Articles » PMID: 37322156

Nanosensor-based Monitoring of Autophagy-associated Lysosomal Acidification in Vivo

Abstract

Autophagy is a cellular process with important functions that drive neurodegenerative diseases and cancers. Lysosomal hyperacidification is a hallmark of autophagy. Lysosomal pH is currently measured by fluorescent probes in cell culture, but existing methods do not allow for quantitative, transient or in vivo measurements. In the present study, we developed near-infrared optical nanosensors using organic color centers (covalent sp defects on carbon nanotubes) to measure autophagy-mediated endolysosomal hyperacidification in live cells and in vivo. The nanosensors localize to the lysosomes, where the emission band shifts in response to local pH, enabling spatial, dynamic and quantitative mapping of subtle changes in lysosomal pH. Using the sensor, we observed cellular and intratumoral hyperacidification on administration of mTORC1 and V-ATPase modulators, revealing that lysosomal acidification mirrors the dynamics of S6K dephosphorylation and LC3B lipidation while diverging from p62 degradation. This sensor enables the transient and in vivo monitoring of the autophagy-lysosomal pathway.

Citing Articles

Temperature response of defect photoluminescence in locally functionalized single-walled carbon nanotubes.

Hamano R, Niidome Y, Tanaka N, Shiraki T, Fujigaya T RSC Adv. 2025; 15(6):4137-4148.

PMID: 39926239 PMC: 11801182. DOI: 10.1039/d4ra08569h.


Holistic Investigation of Graphene Quantum Dot Endocytosis.

Topkiran U, Valimukhametova A, Vashani D, Paul H, Dorsky A, Sottile O Small. 2025; 21(9):e2406095.

PMID: 39895235 PMC: 11878264. DOI: 10.1002/smll.202406095.


Single-Walled Carbon Nanotubes as Optical Transducers for Nanobiosensors In Vivo.

Cohen Z, Williams R ACS Nano. 2024; 18(52):35164-35181.

PMID: 39696968 PMC: 11697343. DOI: 10.1021/acsnano.4c13076.


Role of Oxygen Defects in Eliciting a Divergent Fluorescence Response of Single-Walled Carbon Nanotubes to Dopamine and Serotonin.

Basu S, Hendler-Neumark A, Bisker G ACS Nano. 2024; 18(50):34134-34146.

PMID: 39632591 PMC: 11656842. DOI: 10.1021/acsnano.4c10360.


Near-Infrared Photoluminescence Responses of Single-Walled Carbon Nanotubes Induced by Biomolecules Detected on a Microbead Surface.

Tachikawa Y, Ito M, Irita M, Harada T, Umemura K ACS Omega. 2024; 9(44):44734-44740.

PMID: 39524645 PMC: 11541476. DOI: 10.1021/acsomega.4c07641.


References
1.
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J . Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009; 29(10):2570-81. PMC: 2682037. DOI: 10.1128/MCB.00166-09. View

2.
Jin H, Heller D, Sharma R, Strano M . Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano. 2009; 3(1):149-58. DOI: 10.1021/nn800532m. View

3.
Pena-Llopis S, Vega-Rubin-de-Celis S, Schwartz J, Wolff N, Tran T, Zou L . Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 2011; 30(16):3242-58. PMC: 3160667. DOI: 10.1038/emboj.2011.257. View

4.
Chung C, Shin H, Berdan C, Ford B, Ward C, Olzmann J . Covalent targeting of the vacuolar H-ATPase activates autophagy via mTORC1 inhibition. Nat Chem Biol. 2019; 15(8):776-785. PMC: 6641988. DOI: 10.1038/s41589-019-0308-4. View

5.
Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez J, Galicia-Velasco M, Aguilar-Cazares D . The Double-Edge Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity. Front Oncol. 2020; 10:578418. PMC: 7575731. DOI: 10.3389/fonc.2020.578418. View