» Articles » PMID: 26481189

Light-induced Cell Damage in Live-cell Super-resolution Microscopy

Overview
Journal Sci Rep
Specialty Science
Date 2015 Oct 21
PMID 26481189
Citations 186
Authors
Affiliations
Soon will be listed here.
Abstract

Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20-24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of ~1 kW cm(-2) at 640 nm for several minutes, the maximum dose at 405 nm is only ~50 J cm(-2), emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities.

Citing Articles

Impact of triplet state population on GFP-type fluorescence and photobleaching.

Byrdin M, Byrdina S Biol Cell. 2025; 117(2):e2400076.

PMID: 39945540 PMC: 11823621. DOI: 10.1111/boc.202400076.


Subwavelength-scale off-axis optical nanomanipulation within Gaussian-beam traps.

Zhou L, Sun W, Tao Z, Xiong N, Huang C, Jiang X Nanophotonics. 2025; 14(2):219-228.

PMID: 39927206 PMC: 11806509. DOI: 10.1515/nanoph-2024-0527.


Electrophysiologically calibrated optogenetic stimulation of dentate granule cells mitigates dendritic spine loss in denervated organotypic entorhino-hippocampal slice cultures.

Hanauske T, Koretz C, Jungenitz T, Roeper J, Drakew A, Deller T Sci Rep. 2025; 15(1):4563.

PMID: 39915664 PMC: 11802742. DOI: 10.1038/s41598-025-88536-w.


Visible light-responsive hydrogels for cellular dynamics and spatiotemporal viscoelastic regulation.

Lu Y, Chen C, Li H, Zhao P, Zhao Y, Li B Nat Commun. 2025; 16(1):1365.

PMID: 39904989 PMC: 11794891. DOI: 10.1038/s41467-024-54880-0.


Advancing Platelet Research Through Live-Cell Imaging: Challenges, Techniques, and Insights.

Tan Y, Liu J, Su Q Sensors (Basel). 2025; 25(2).

PMID: 39860861 PMC: 11768609. DOI: 10.3390/s25020491.


References
1.
Grotjohann T, Testa I, Leutenegger M, Bock H, Urban N, Lavoie-Cardinal F . Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature. 2011; 478(7368):204-8. DOI: 10.1038/nature10497. View

2.
Uno S, Kamiya M, Yoshihara T, Sugawara K, Okabe K, Tarhan M . A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat Chem. 2014; 6(8):681-9. DOI: 10.1038/nchem.2002. View

3.
Betzig E, Patterson G, Sougrat R, Lindwasser O, Olenych S, Bonifacino J . Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006; 313(5793):1642-5. DOI: 10.1126/science.1127344. View

4.
Rust M, Bates M, Zhuang X . Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006; 3(10):793-5. PMC: 2700296. DOI: 10.1038/nmeth929. View

5.
Hess S, Girirajan T, Mason M . Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006; 91(11):4258-72. PMC: 1635685. DOI: 10.1529/biophysj.106.091116. View