» Articles » PMID: 37290445

PLIN5 Interacts with FATP4 at Membrane Contact Sites to Promote Lipid Droplet-to-mitochondria Fatty Acid Transport

Abstract

Cells adjust their metabolism by remodeling membrane contact sites that channel metabolites to different fates. Lipid droplet (LD)-mitochondria contacts change in response to fasting, cold exposure, and exercise. However, their function and mechanism of formation have remained controversial. We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts. We demonstrate that efficient LD-to-mitochondria fatty acid (FA) trafficking and ß-oxidation during starvation of myoblasts are promoted by phosphorylation of PLIN5 and require an intact PLIN5 mitochondrial tethering domain. Using human and murine cells, we further identified the acyl-CoA synthetase, FATP4 (ACSVL4), as a mitochondrial interactor of PLIN5. The C-terminal domains of PLIN5 and FATP4 constitute a minimal protein interaction capable of inducing organelle contacts. Our work suggests that starvation leads to phosphorylation of PLIN5, lipolysis, and subsequent channeling of FAs from LDs to FATP4 on mitochondria for conversion to fatty-acyl-CoAs and subsequent oxidation.

Citing Articles

The Role of Solute Carrier Family Transporters in Hepatic Steatosis and Hepatic Fibrosis.

Zhang C, Yang X, Xue Y, Li H, Zeng C, Chen M J Clin Transl Hepatol. 2025; 13(3):233-252.

PMID: 40078199 PMC: 11894391. DOI: 10.14218/JCTH.2024.00348.


Proximity proteomics reveals a mechanism of fatty acid transfer at lipid droplet-mitochondria- endoplasmic reticulum contact sites.

Bezawork-Geleta A, Devereux C, Keenan S, Lou J, Cho E, Nie S Nat Commun. 2025; 16(1):2135.

PMID: 40032835 PMC: 11876333. DOI: 10.1038/s41467-025-57405-5.


Omics Approaches to Study Perilipins and Their Significant Biological Role in Cardiometabolic Disorders.

Gianazza E, Papaianni G, Brocca L, Banfi C, Mallia A Int J Mol Sci. 2025; 26(2).

PMID: 39859272 PMC: 11765208. DOI: 10.3390/ijms26020557.


Spatially resolved rewiring of mitochondria-lipid droplet interactions in hepatic lipid homeostasis.

Kang S, Brown L, Miller C, Barrows K, Golino J, Cultraro C bioRxiv. 2025; .

PMID: 39803529 PMC: 11722523. DOI: 10.1101/2024.12.10.627730.


Ezetimibe Enhances Lipid Droplet and Mitochondria Contact Formation, Improving Fatty Acid Transfer and Reducing Lipotoxicity in Alport Syndrome Podocytes.

Kim J, Yang E, Molina David J, Cho S, Ficarella M, Pape N Int J Mol Sci. 2024; 25(23).

PMID: 39684843 PMC: 11642288. DOI: 10.3390/ijms252313134.


References
1.
Benador I, Veliova M, Mahdaviani K, Petcherski A, Wikstrom J, Assali E . Mitochondria Bound to Lipid Droplets Have Unique Bioenergetics, Composition, and Dynamics that Support Lipid Droplet Expansion. Cell Metab. 2018; 27(4):869-885.e6. PMC: 5969538. DOI: 10.1016/j.cmet.2018.03.003. View

2.
Wang H, Sztalryd C . Oxidative tissue: perilipin 5 links storage with the furnace. Trends Endocrinol Metab. 2011; 22(6):197-203. PMC: 3122074. DOI: 10.1016/j.tem.2011.03.008. View

3.
Wang H, Becuwe M, Housden B, Chitraju C, Porras A, Graham M . Seipin is required for converting nascent to mature lipid droplets. Elife. 2016; 5. PMC: 5035145. DOI: 10.7554/eLife.16582. View

4.
Wang J, Fang N, Xiong J, Du Y, Cao Y, Ji W . An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D-TSG101 interactions. Nat Commun. 2021; 12(1):1252. PMC: 7902631. DOI: 10.1038/s41467-021-21525-5. View

5.
Yang J, Zhang Y . I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015; 43(W1):W174-81. PMC: 4489253. DOI: 10.1093/nar/gkv342. View