6.
Speakman J, Heidari-Bakavoli S
. Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature. Sci Rep. 2016; 6:30409.
PMC: 4967873.
DOI: 10.1038/srep30409.
View
7.
Takahashi T, Sunagawa G, Soya S, Abe M, Sakurai K, Ishikawa K
. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature. 2020; 583(7814):109-114.
DOI: 10.1038/s41586-020-2163-6.
View
8.
Yu S, Qualls-Creekmore E, Rezai-Zadeh K, Jiang Y, Berthoud H, Morrison C
. Glutamatergic Preoptic Area Neurons That Express Leptin Receptors Drive Temperature-Dependent Body Weight Homeostasis. J Neurosci. 2016; 36(18):5034-46.
PMC: 4854966.
DOI: 10.1523/JNEUROSCI.0213-16.2016.
View
9.
Brown J, Scarlett J, Schwartz M
. Rethinking the role of the brain in glucose homeostasis and diabetes pathogenesis. J Clin Invest. 2019; 129(8):3035-3037.
PMC: 6668663.
DOI: 10.1172/JCI130904.
View
10.
Tan C, Cooke E, Leib D, Lin Y, Daly G, Zimmerman C
. Warm-Sensitive Neurons that Control Body Temperature. Cell. 2016; 167(1):47-59.e15.
PMC: 5062957.
DOI: 10.1016/j.cell.2016.08.028.
View
11.
Meek T, Nelson J, Matsen M, Dorfman M, Guyenet S, Damian V
. Functional identification of a neurocircuit regulating blood glucose. Proc Natl Acad Sci U S A. 2016; 113(14):E2073-82.
PMC: 4833243.
DOI: 10.1073/pnas.1521160113.
View
12.
Morrison S, Nakamura K
. Central Mechanisms for Thermoregulation. Annu Rev Physiol. 2018; 81:285-308.
DOI: 10.1146/annurev-physiol-020518-114546.
View
13.
Moses R, Patterson M, REGAN J, Chaunchaiyakul R, Taylor N, Jenkins A
. A non-linear effect of ambient temperature on apparent glucose tolerance. Diabetes Res Clin Pract. 1997; 36(1):35-40.
DOI: 10.1016/s0168-8227(97)01391-0.
View
14.
Morton G, Muta K, Kaiyala K, Rojas J, Scarlett J, Matsen M
. Evidence That the Sympathetic Nervous System Elicits Rapid, Coordinated, and Reciprocal Adjustments of Insulin Secretion and Insulin Sensitivity During Cold Exposure. Diabetes. 2017; 66(4):823-834.
PMC: 5360298.
DOI: 10.2337/db16-1351.
View
15.
Tan C, Knight Z
. Regulation of Body Temperature by the Nervous System. Neuron. 2018; 98(1):31-48.
PMC: 6034117.
DOI: 10.1016/j.neuron.2018.02.022.
View
16.
Deem J, Faber C, Pedersen C, Phan B, Larsen S, Ogimoto K
. Cold-induced hyperphagia requires AgRP neuron activation in mice. Elife. 2020; 9.
PMC: 7837681.
DOI: 10.7554/eLife.58764.
View
17.
Leicht C, James L, Briscoe J, Hoekstra S
. Hot water immersion acutely increases postprandial glucose concentrations. Physiol Rep. 2019; 7(20):e14223.
PMC: 6805849.
DOI: 10.14814/phy2.14223.
View
18.
Blauw L, Aziz N, Tannemaat M, Blauw C, de Craen A, Pijl H
. Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature. BMJ Open Diabetes Res Care. 2017; 5(1):e000317.
PMC: 5372132.
DOI: 10.1136/bmjdrc-2016-000317.
View
19.
Akanji A, Bruce M, Frayn K, Hockaday T, Kaddaha G
. Oral glucose tolerance and ambient temperature in non-diabetic subjects. Diabetologia. 1987; 30(6):431-3.
DOI: 10.1007/BF00292547.
View
20.
Kaiyala K, Ogimoto K, Nelson J, Schwartz M, Morton G
. Leptin signaling is required for adaptive changes in food intake, but not energy expenditure, in response to different thermal conditions. PLoS One. 2015; 10(3):e0119391.
PMC: 4355297.
DOI: 10.1371/journal.pone.0119391.
View