6.
Koutsopoulos S
. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res. 2002; 62(4):600-12.
DOI: 10.1002/jbm.10280.
View
7.
Ribeiro M, Monteiro F, Ferraz M
. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2013; 2(4):176-94.
PMC: 3568104.
DOI: 10.4161/biom.22905.
View
8.
Zhang L, Yang G, Johnson B, Jia X
. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2018; 84:16-33.
DOI: 10.1016/j.actbio.2018.11.039.
View
9.
Guo J, Sun W, Kim J, Lu X, Li Q, Lin M
. Development of tannin-inspired antimicrobial bioadhesives. Acta Biomater. 2018; 72:35-44.
PMC: 6328059.
DOI: 10.1016/j.actbio.2018.03.008.
View
10.
Filipovic U, Dahmane R, Ghannouchi S, Zore A, Bohinc K
. Bacterial adhesion on orthopedic implants. Adv Colloid Interface Sci. 2020; 283:102228.
DOI: 10.1016/j.cis.2020.102228.
View
11.
Kong F, Zhang H, Qu X, Zhang X, Chen D, Ding R
. Gold Nanorods, DNA Origami, and Porous Silicon Nanoparticle-functionalized Biocompatible Double Emulsion for Versatile Targeted Therapeutics and Antibody Combination Therapy. Adv Mater. 2016; 28(46):10195-10203.
DOI: 10.1002/adma.201602763.
View
12.
Rezania N, Asadi-Eydivand M, Abolfathi N, Bonakdar S, Mehrjoo M, Solati-Hashjin M
. Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior. J Mater Sci Mater Med. 2022; 33(3):31.
PMC: 8913482.
DOI: 10.1007/s10856-022-06653-8.
View
13.
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y
. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. Materials (Basel). 2022; 15(23).
PMC: 9738134.
DOI: 10.3390/ma15238475.
View
14.
Doustdar F, Olad A, Ghorbani M
. Development of a novel reinforced scaffold based on chitosan/cellulose nanocrystals/halloysite nanotubes for curcumin delivery. Carbohydr Polym. 2022; 282:119127.
DOI: 10.1016/j.carbpol.2022.119127.
View
15.
Guo J, Kim G, Shan D, Kim J, Hu J, Wang W
. Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. Biomaterials. 2016; 112:275-286.
PMC: 5121090.
DOI: 10.1016/j.biomaterials.2016.10.010.
View
16.
MacDonald A, Harley-Troxell M, Newby S, Dhar M
. 3D-Printing Graphene Scaffolds for Bone Tissue Engineering. Pharmaceutics. 2022; 14(9).
PMC: 9503344.
DOI: 10.3390/pharmaceutics14091834.
View
17.
Delloye C, Cornu O, Druez V, Barbier O
. Bone allografts: What they can offer and what they cannot. J Bone Joint Surg Br. 2007; 89(5):574-9.
DOI: 10.1302/0301-620X.89B5.19039.
View
18.
Zafar M, Zhu D, Zhang Z
. 3D Printing of Bioceramics for Bone Tissue Engineering. Materials (Basel). 2019; 12(20).
PMC: 6829398.
DOI: 10.3390/ma12203361.
View
19.
Lew D, Waldvogel F
. Osteomyelitis. Lancet. 2004; 364(9431):369-79.
DOI: 10.1016/S0140-6736(04)16727-5.
View
20.
Zhang H, Shen X, Fei Z, Fan X, Ma L, Wang H
. Ag-Incorporated Polydopamine/Tannic Acid Coating on Titanium With Enhanced Cytocompatible and Antibacterial Properties. Front Bioeng Biotechnol. 2022; 10:877738.
PMC: 8980918.
DOI: 10.3389/fbioe.2022.877738.
View