» Articles » PMID: 37164976

M4Raw: A Multi-contrast, Multi-repetition, Multi-channel MRI K-space Dataset for Low-field MRI Research

Overview
Journal Sci Data
Specialty Science
Date 2023 May 10
PMID 37164976
Authors
Affiliations
Soon will be listed here.
Abstract

Recently, low-field magnetic resonance imaging (MRI) has gained renewed interest to promote MRI accessibility and affordability worldwide. The presented M4Raw dataset aims to facilitate methodology development and reproducible research in this field. The dataset comprises multi-channel brain k-space data collected from 183 healthy volunteers using a 0.3 Tesla whole-body MRI system, and includes T1-weighted, T2-weighted, and fluid attenuated inversion recovery (FLAIR) images with in-plane resolution of ~1.2 mm and through-plane resolution of 5 mm. Importantly, each contrast contains multiple repetitions, which can be used individually or to form multi-repetition averaged images. After excluding motion-corrupted data, the partitioned training and validation subsets contain 1024 and 240 volumes, respectively. To demonstrate the potential utility of this dataset, we trained deep learning models for image denoising and parallel imaging tasks and compared their performance with traditional reconstruction methods. This M4Raw dataset will be valuable for the development of advanced data-driven methods specifically for low-field MRI. It can also serve as a benchmark dataset for general MRI reconstruction algorithms.

Citing Articles

Clean Self-Supervised MRI Reconstruction from Noisy, Sub-Sampled Training Data with Robust SSDU.

Millard C, Chiew M Bioengineering (Basel). 2025; 11(12.

PMID: 39768122 PMC: 11726718. DOI: 10.3390/bioengineering11121305.


MRI denoising with a non-blind deep complex-valued convolutional neural network.

Dou Q, Wang Z, Feng X, Campbell-Washburn A, Mugler 3rd J, Meyer C NMR Biomed. 2024; 38(1):e5291.

PMID: 39523816 PMC: 11605166. DOI: 10.1002/nbm.5291.


MRI at low field: A review of software solutions for improving SNR.

Ayde R, Vornehm M, Zhao Y, Knoll F, Wu E, Sarracanie M NMR Biomed. 2024; 38(1):e5268.

PMID: 39375036 PMC: 11605168. DOI: 10.1002/nbm.5268.


Deep learning for accelerated and robust MRI reconstruction.

Heckel R, Jacob M, Chaudhari A, Perlman O, Shimron E MAGMA. 2024; 37(3):335-368.

PMID: 39042206 PMC: 11316714. DOI: 10.1007/s10334-024-01173-8.


Evaluating Machine Learning-Based MRI Reconstruction Using Digital Image Quality Phantoms.

Tan F, Delfino J, Zeng R Bioengineering (Basel). 2024; 11(6).

PMID: 38927849 PMC: 11200466. DOI: 10.3390/bioengineering11060614.


References
1.
Hammernik K, Klatzer T, Kobler E, Recht M, Sodickson D, Pock T . Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2017; 79(6):3055-3071. PMC: 5902683. DOI: 10.1002/mrm.26977. View

2.
Lyu M, Mei L, Huang S, Liu S, Li Y, Yang K . M4Raw: A multi-contrast, multi-repetition, multi-channel MRI k-space dataset for low-field MRI research. Sci Data. 2023; 10(1):264. PMC: 10172399. DOI: 10.1038/s41597-023-02181-4. View

3.
Lang M, Rapalino O, Huang S, Lev M, Conklin J, Wald L . Emerging Techniques and Future Directions: Fast and Portable Magnetic Resonance Imaging. Magn Reson Imaging Clin N Am. 2022; 30(3):565-582. DOI: 10.1016/j.mric.2022.05.005. View

4.
Shimron E, Tamir J, Wang K, Lustig M . Implicit data crimes: Machine learning bias arising from misuse of public data. Proc Natl Acad Sci U S A. 2022; 119(13):e2117203119. PMC: 9060447. DOI: 10.1073/pnas.2117203119. View

5.
Mazurek M, Cahn B, Yuen M, Prabhat A, Chavva I, Shah J . Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage. Nat Commun. 2021; 12(1):5119. PMC: 8387402. DOI: 10.1038/s41467-021-25441-6. View