» Articles » PMID: 37162194

Tiered Sympathetic Control of Cardiac Function Revealed by Viral Tracing and Single Cell Transcriptome Profiling

Overview
Journal Elife
Specialty Biology
Date 2023 May 10
PMID 37162194
Authors
Affiliations
Soon will be listed here.
Abstract

The cell bodies of postganglionic sympathetic neurons innervating the heart primarily reside in the stellate ganglion (SG), alongside neurons innervating other organs and tissues. Whether cardiac-innervating stellate ganglionic neurons (SGNs) exhibit diversity and distinction from those innervating other tissues is not known. To identify and resolve the transcriptomic profiles of SGNs innervating the heart, we leveraged retrograde tracing techniques using adeno-associated virus (AAV) expressing fluorescent proteins (GFP or Td-tomato) with single cell RNA sequencing. We investigated electrophysiologic, morphologic, and physiologic roles for subsets of cardiac-specific neurons and found that three of five adrenergic SGN subtypes innervate the heart. These three subtypes stratify into two subpopulations; high (NA1a) and low (NA1b and NA1c) neuropeptide-Y (NPY) -expressing cells, exhibit distinct morphological, neurochemical, and electrophysiologic characteristics. In physiologic studies in transgenic mouse models modulating NPY signaling, we identified differential control of cardiac responses by these two subpopulations to high and low stress states. These findings provide novel insights into the unique properties of neurons responsible for cardiac sympathetic regulation, with implications for novel strategies to target specific neuronal subtypes for sympathetic blockade in cardiac disease.

Citing Articles

Understanding the role of nerves in head and neck cancers - a review.

Rutkowski K, Gola M, Godlewski J, Starzynska A, Marvaso G, Mastroleo F Oncol Rev. 2025; 18:1514004.

PMID: 39906323 PMC: 11791411. DOI: 10.3389/or.2024.1514004.


Molecular and cellular neurocardiology in heart disease.

Habecker B, Bers D, Birren S, Chang R, Herring N, Kay M J Physiol. 2024; .

PMID: 38778747 PMC: 11582088. DOI: 10.1113/JP284739.


Comparative specialization of intrinsic cardiac neurons in humans, mice, and pigs.

Tompkins J, Hoover D, Havton L, Patel J, Cho Y, Smith E bioRxiv. 2024; .

PMID: 38645175 PMC: 11030249. DOI: 10.1101/2024.04.04.588174.


Sympathetic NPY controls glucose homeostasis, cold tolerance, and cardiovascular functions in mice.

Kumari R, Pascalau R, Wang H, Bajpayi S, Yurgel M, Quansah K Cell Rep. 2024; 43(2):113674.

PMID: 38236776 PMC: 10951981. DOI: 10.1016/j.celrep.2024.113674.


Tiered sympathetic control of cardiac function revealed by viral tracing and single cell transcriptome profiling.

Sharma S, Littman R, Tompkins J, Arneson D, Contreras J, Dajani A Elife. 2023; 12.

PMID: 37162194 PMC: 10212561. DOI: 10.7554/eLife.86295.

References
1.
Pierce J, Milner T . Parallel increases in the synaptic and surface areas of mossy fiber terminals following seizure induction. Synapse. 2001; 39(3):249-56. DOI: 10.1002/1098-2396(20010301)39:3<249::AID-SYN1006>3.0.CO;2-5. View

2.
Protas L, Barbuti A, Qu J, Rybin V, Palmiter R, Steinberg S . Neuropeptide Y is an essential in vivo developmental regulator of cardiac ICa,L. Circ Res. 2003; 93(10):972-9. DOI: 10.1161/01.RES.0000099244.01926.56. View

3.
Herring N, Cranley J, Lokale M, Li D, Shanks J, Alston E . The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability. J Mol Cell Cardiol. 2011; 52(3):667-76. PMC: 3314977. DOI: 10.1016/j.yjmcc.2011.11.016. View

4.
Gardner R, Ripplinger C, Myles R, Habecker B . Molecular Mechanisms of Sympathetic Remodeling and Arrhythmias. Circ Arrhythm Electrophysiol. 2016; 9(2):e001359. PMC: 4730917. DOI: 10.1161/CIRCEP.115.001359. View

5.
Kuo L, Kitlinska J, Tilan J, Li L, Baker S, Johnson M . Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med. 2007; 13(7):803-11. DOI: 10.1038/nm1611. View