» Articles » PMID: 27114333

Clinical Neurocardiology Defining the Value of Neuroscience-based Cardiovascular Therapeutics

Abstract

The autonomic nervous system regulates all aspects of normal cardiac function, and is recognized to play a critical role in the pathophysiology of many cardiovascular diseases. As such, the value of neuroscience-based cardiovascular therapeutics is increasingly evident. This White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases.

Citing Articles

Characterizing Brain-Cardiovascular Aging Using Multiorgan Imaging and Machine Learning.

Amirmoezzi Y, Cropley V, Mansour L S, Seguin C, Zalesky A, Tian Y J Neurosci. 2025; 45(8).

PMID: 39971581 PMC: 11841759. DOI: 10.1523/JNEUROSCI.1440-24.2024.


Peculiarities of cardio-respiratory relationships in qualified athletes with different types of heart rhythm regulation according to respiratory maneuver data.

Romanchuk O Front Sports Act Living. 2025; 6:1451643.

PMID: 39872494 PMC: 11769980. DOI: 10.3389/fspor.2024.1451643.


Case Report: The unrelenting journey-successful resolution of catecholaminergic polymorphic ventricular tachycardia (CPVT) through right cardiac sympathetic denervation in a teenager after left cardiac sympathetic denervation.

Leung H, Kwok S, Lau M, Lee L, Tsao S Front Cardiovasc Med. 2024; 11:1477359.

PMID: 39735866 PMC: 11671521. DOI: 10.3389/fcvm.2024.1477359.


Neurophysiological Basis of Electroacupuncture Stimulation in the Treatment of Cardiovascular-Related Diseases: Vagal Interoceptive Loops.

Liu Y, Xu T, Yu Z, Xu B Brain Behav. 2024; 14(10):e70076.

PMID: 39344397 PMC: 11440030. DOI: 10.1002/brb3.70076.


Characterisation and distribution of human coronary artery innervation.

Tokcan M, Federspiel J, Lauder L, Hohl M, Al Ghorani H, Kulenthiran S EuroIntervention. 2024; 20(17):e1107-e1117.

PMID: 39219360 PMC: 11352544. DOI: 10.4244/EIJ-D-24-00167.


References
1.
Hamann J, Ruble S, Stolen C, Wang M, Gupta R, Rastogi S . Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. Eur J Heart Fail. 2013; 15(12):1319-26. PMC: 3895958. DOI: 10.1093/eurjhf/hft118. View

2.
Kanazawa H, Ieda M, Kimura K, Arai T, Kawaguchi-Manabe H, Matsuhashi T . Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J Clin Invest. 2010; 120(2):408-21. PMC: 2810079. DOI: 10.1172/JCI39778. View

3.
Gray A, Johnson T, Ardell J, Massari V . Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. J Appl Physiol (1985). 2004; 96(6):2273-8. DOI: 10.1152/japplphysiol.00616.2003. View

4.
Kember G, Armour J, Zamir M . Dynamic neural networking as a basis for plasticity in the control of heart rate. J Theor Biol. 2012; 317:39-46. DOI: 10.1016/j.jtbi.2012.09.024. View

5.
Kim D, Luthringer D, Lai A, Suh G, Czer L, Chen L . Sympathetic nerve sprouting after orthotopic heart transplantation. J Heart Lung Transplant. 2004; 23(12):1349-58. DOI: 10.1016/j.healun.2003.10.005. View