» Articles » PMID: 37145934

Similar Somatotopy for Active and Passive Digit Representation in Primary Somatosensory Cortex

Overview
Journal Hum Brain Mapp
Publisher Wiley
Specialty Neurology
Date 2023 May 5
PMID 37145934
Authors
Affiliations
Soon will be listed here.
Abstract

Scientists traditionally use passive stimulation to examine the organisation of primary somatosensory cortex (SI). However, given the close, bidirectional relationship between the somatosensory and motor systems, active paradigms involving free movement may uncover alternative SI representational motifs. Here, we used 7 Tesla functional magnetic resonance imaging to compare hallmark features of SI digit representation between active and passive tasks which were unmatched on task or stimulus properties. The spatial location of digit maps, somatotopic organisation, and inter-digit representational structure were largely consistent between tasks, indicating representational consistency. We also observed some task differences. The active task produced higher univariate activity and multivariate representational information content (inter-digit distances). The passive task showed a trend towards greater selectivity for digits versus their neighbours. Our findings highlight that, while the gross features of SI functional organisation are task invariant, it is important to also consider motor contributions to digit representation.

Citing Articles

Enhanced Somatosensory Inhibition Sharpens Hand Representation and Sensorimotor Skills in Pianists.

Hirano M, Kimoto Y, Shiotani S, Furuya S J Neurosci. 2025; 45(8).

PMID: 39746821 PMC: 11841757. DOI: 10.1523/JNEUROSCI.1486-24.2024.


Wearable non-invasive neuroprosthesis for targeted sensory restoration in neuropathy.

Gozzi N, Chee L, Odermatt I, Kikkert S, Preatoni G, Valle G Nat Commun. 2024; 15(1):10840.

PMID: 39738088 PMC: 11686223. DOI: 10.1038/s41467-024-55152-7.


A Roadmap for Implanting Electrode Arrays to Evoke Tactile Sensations Through Intracortical Stimulation.

Downey J, Schone H, Foldes S, Greenspon C, Liu F, Verbaarschot C Hum Brain Mapp. 2024; 45(18):e70118.

PMID: 39720868 PMC: 11669040. DOI: 10.1002/hbm.70118.


A roadmap for implanting microelectrode arrays to evoke tactile sensations through intracortical microstimulation.

Downey J, Schone H, Foldes S, Greenspon C, Liu F, Verbaarschot C medRxiv. 2024; .

PMID: 38712177 PMC: 11071570. DOI: 10.1101/2024.04.26.24306239.


Stable Cortical Body Maps Before and After Arm Amputation.

Schone H, Maimon Mor R, Kollamkulam M, Szymanska M, Gerrand C, Woollard A bioRxiv. 2024; .

PMID: 38168448 PMC: 10760201. DOI: 10.1101/2023.12.13.571314.


References
1.
Karadimas S, Satkunendrarajah K, Laliberte A, Ringuette D, Weisspapir I, Li L . Sensory cortical control of movement. Nat Neurosci. 2019; 23(1):75-84. DOI: 10.1038/s41593-019-0536-7. View

2.
Bensmaia S, Miller L . Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat Rev Neurosci. 2014; 15(5):313-25. DOI: 10.1038/nrn3724. View

3.
Wolpert D, Flanagan J . Motor prediction. Curr Biol. 2001; 11(18):R729-32. DOI: 10.1016/s0960-9822(01)00432-8. View

4.
Jain N, Catania K, Kaas J . A histologically visible representation of the fingers and palm in primate area 3b and its immutability following long-term deafferentations. Cereb Cortex. 1998; 8(3):227-36. DOI: 10.1093/cercor/8.3.227. View

5.
Mathis M, Mathis A, Uchida N . Somatosensory Cortex Plays an Essential Role in Forelimb Motor Adaptation in Mice. Neuron. 2017; 93(6):1493-1503.e6. PMC: 5491974. DOI: 10.1016/j.neuron.2017.02.049. View