6.
Bromer F, Brent M, Thomsen J, Bruel A
. Drill-Hole Bone Defects in Animal Models of Bone Healing: Protocol for a Systematic Review. JMIR Res Protoc. 2022; 11(7):e34887.
PMC: 9345022.
DOI: 10.2196/34887.
View
7.
Pepla E, Besharat L, Palaia G, Tenore G, Migliau G
. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma). 2014; 5(3):108-14.
PMC: 4252862.
View
8.
Cheah C, Al-Namnam N, Lau M, Lim G, Raman R, Fairbairn P
. Synthetic Material for Bone, Periodontal, and Dental Tissue Regeneration: Where Are We Now, and Where Are We Heading Next?. Materials (Basel). 2021; 14(20).
PMC: 8537464.
DOI: 10.3390/ma14206123.
View
9.
Matichescu A, Ardelean L, Rusu L, Craciun D, Bratu E, Babucea M
. Advanced Biomaterials and Techniques for Oral Tissue Engineering and Regeneration-A Review. Materials (Basel). 2020; 13(22).
PMC: 7700200.
DOI: 10.3390/ma13225303.
View
10.
Tumedei M, Mijiritsky E, Mourao C, Piattelli A, Degidi M, Mangano C
. Histological and Biological Response to Different Types of Biomaterials: A Narrative Single Research Center Experience over Three Decades. Int J Environ Res Public Health. 2022; 19(13).
PMC: 9265446.
DOI: 10.3390/ijerph19137942.
View
11.
Shamsoddin E, Houshmand B, Golabgiran M
. Biomaterial selection for bone augmentation in implant dentistry: A systematic review. J Adv Pharm Technol Res. 2019; 10(2):46-50.
PMC: 6474167.
DOI: 10.4103/japtr.JAPTR_327_18.
View
12.
Valencia-Llano C, Lopez-Tenorio D, Saavedra M, Zapata P, Grande-Tovar C
. Comparison of Two Bovine Commercial Xenografts in the Regeneration of Critical Cranial Defects. Molecules. 2022; 27(18).
PMC: 9506155.
DOI: 10.3390/molecules27185745.
View
13.
Dixon D, Gomillion C
. Conductive Scaffolds for Bone Tissue Engineering: Current State and Future Outlook. J Funct Biomater. 2022; 13(1).
PMC: 8788550.
DOI: 10.3390/jfb13010001.
View
14.
Topuz M, Dikici B, Gavgali M
. Titanium-based composite scaffolds reinforced with hydroxyapatite-zirconia: Production, mechanical and in-vitro characterization. J Mech Behav Biomed Mater. 2021; 118:104480.
DOI: 10.1016/j.jmbbm.2021.104480.
View
15.
Sanchez-Labrador L, Molinero-Mourelle P, Perez-Gonzalez F, Saez-Alcaide L, Cortes-Breton Brinkmann J, Martinez J
. Clinical performance of alveolar ridge augmentation with xenogeneic bone block grafts versus autogenous bone block grafts. A systematic review. J Stomatol Oral Maxillofac Surg. 2020; 122(3):293-302.
DOI: 10.1016/j.jormas.2020.10.009.
View
16.
Huang X, Bai J, Liu X, Meng Z, Shang Y, Jiao T
. Scientometric Analysis of Dental Implant Research over the Past 10 Years and Future Research Trends. Biomed Res Int. 2021; 2021:6634055.
PMC: 8057884.
DOI: 10.1155/2021/6634055.
View
17.
Susin C, Lee J, Fiorini T, Koo K, Schupbach P, Finger Stadler A
. Screening of Hydroxyapatite Biomaterials for Alveolar Augmentation Using a Rat Calvaria Critical-Size Defect Model: Bone Formation/Maturation and Biomaterials Resolution. Biomolecules. 2022; 12(11).
PMC: 9687935.
DOI: 10.3390/biom12111677.
View
18.
Dragosloveanu S, Dragosloveanu C, Stanca H, Cotor D, Andrei A, Dragosloveanu C
. Tricalcium phosphate and hydroxyapatite treatment for benign cavitary bone lesions: A prospective clinical trial. Exp Ther Med. 2020; 20(6):215.
PMC: 7604753.
DOI: 10.3892/etm.2020.9345.
View
19.
Jakubowicz J
. Special Issue: Ti-Based Biomaterials: Synthesis, Properties and Applications. Materials (Basel). 2020; 13(7).
PMC: 7178642.
DOI: 10.3390/ma13071696.
View
20.
Susin C, Lee J, Fiorini T, Koo K, Schupbach P, Angst P
. Screening of candidate biomaterials for alveolar augmentation using a critical-size rat calvaria defect model. J Clin Periodontol. 2018; 45(7):884-893.
DOI: 10.1111/jcpe.12904.
View