Deorphanizing Peptides Using Structure Prediction
Overview
Medical Informatics
Authors
Affiliations
Many endogenous peptides rely on signaling pathways to exert their function, but identifying their cognate receptors remains a challenging problem. We investigate the use of AlphaFold-Multimer complex structure prediction together with transmembrane topology prediction for peptide deorphanization. We find that AlphaFold's confidence metrics have strong performance for prioritizing true peptide-receptor interactions. In a library of 1112 human receptors, the method ranks true receptors in the top percentile on average for 11 benchmark peptide-receptor pairs.
Euan Martinez A, Bergmann A, Tellkamp F, Schott-Verdugo S, Bouvain P, Steinhausen J Theranostics. 2025; 15(1):1-18.
PMID: 39744226 PMC: 11667234. DOI: 10.7150/thno.96990.
Maaroufi H Chem Senses. 2024; 49.
PMID: 38695158 PMC: 11103048. DOI: 10.1093/chemse/bjae018.
Identification of type VI secretion system effector-immunity pairs using structural bioinformatics.
Geller A, Shalom M, Zlotkin D, Blum N, Levy A Mol Syst Biol. 2024; 20(6):702-718.
PMID: 38658795 PMC: 11148199. DOI: 10.1038/s44320-024-00035-8.
PPIscreenML: Structure-based screening for protein-protein interactions using AlphaFold.
Mischley V, Maier J, Chen J, Karanicolas J bioRxiv. 2024; .
PMID: 38559274 PMC: 10979958. DOI: 10.1101/2024.03.16.585347.
Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation.
Lee C, Hubrich D, Varga J, Schafer C, Welzel M, Schumbera E Mol Syst Biol. 2024; 20(2):75-97.
PMID: 38225382 PMC: 10883280. DOI: 10.1038/s44320-023-00005-6.