» Articles » PMID: 37091233

Network Model Integrated with Multi-omic Data Predicts MBNL1 Signals That Drive Myofibroblast Activation

Overview
Journal iScience
Publisher Cell Press
Date 2023 Apr 24
PMID 37091233
Authors
Affiliations
Soon will be listed here.
Abstract

RNA-binding protein muscleblind-like1 (MBNL1) was recently identified as a central regulator of cardiac wound healing and myofibroblast activation. To identify putative MBNL1 targets, we integrated multiple genome-wide screens with a fibroblast network model. We expanded the model to include putative MBNL1-target interactions and recapitulated published experimental results to validate new signaling modules. We prioritized 14 MBNL1 targets and developed novel fibroblast signaling modules for p38 MAPK, Hippo, Runx1, and Sox9 pathways. We experimentally validated MBNL1 regulation of p38 expression in mouse cardiac fibroblasts. Using the expanded fibroblast model, we predicted a hierarchy of MBNL1 regulated pathways with strong influence on αSMA expression. This study lays a foundation to explore the network mechanisms of MBNL1 signaling central to fibrosis.

Citing Articles

Functions of the Muscleblind-like protein family and their role in disease.

Zhou H, Xu J, Pan L Cell Commun Signal. 2025; 23(1):97.

PMID: 39966885 PMC: 11837677. DOI: 10.1186/s12964-025-02102-5.


Multiscale computational model predicts how environmental changes and treatments affect microvascular remodeling in fibrotic disease.

Leonard-Duke J, Agro S, Csordas D, Bruce A, Eggertsen T, Tavakol T PNAS Nexus. 2024; 4(1):pgae551.

PMID: 39720203 PMC: 11667245. DOI: 10.1093/pnasnexus/pgae551.


Multiscale computational model predicts how environmental changes and drug treatments affect microvascular remodeling in fibrotic disease.

Leonard-Duke J, Agro S, Csordas D, Bruce A, Eggertsen T, Tavakol T bioRxiv. 2024; .

PMID: 38559112 PMC: 10979947. DOI: 10.1101/2024.03.15.585249.


Cavin-2 promotes fibroblast-to-myofibroblast trans-differentiation and aggravates cardiac fibrosis.

Higuchi Y, Ogata T, Nakanishi N, Nishi M, Tsuji Y, Tomita S ESC Heart Fail. 2023; 11(1):167-178.

PMID: 37872863 PMC: 10804157. DOI: 10.1002/ehf2.14571.

References
1.
Herum K, Choppe J, Kumar A, Engler A, McCulloch A . Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol Biol Cell. 2017; 28(14):1871-1882. PMC: 5541838. DOI: 10.1091/mbc.E17-01-0014. View

2.
Francis Stuart S, De Jesus N, Lindsey M, Ripplinger C . The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J Mol Cell Cardiol. 2016; 91:114-22. PMC: 4764395. DOI: 10.1016/j.yjmcc.2015.12.024. View

3.
Zeigler A, Nelson A, Chandrabhatla A, Brazhkina O, Holmes J, Saucerman J . Computational model predicts paracrine and intracellular drivers of fibroblast phenotype after myocardial infarction. Matrix Biol. 2020; 91-92:136-151. PMC: 7434705. DOI: 10.1016/j.matbio.2020.03.007. View

4.
Parichatikanond W, Luangmonkong T, Mangmool S, Kurose H . Therapeutic Targets for the Treatment of Cardiac Fibrosis and Cancer: Focusing on TGF-β Signaling. Front Cardiovasc Med. 2020; 7:34. PMC: 7075814. DOI: 10.3389/fcvm.2020.00034. View

5.
Zhao S, Kurenbekova L, Gao Y, Roos A, Creighton C, Rao P . NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma. Oncogene. 2015; 34(39):5069-79. PMC: 4802362. DOI: 10.1038/onc.2014.429. View