» Articles » PMID: 37063293

Multi-omics Analyses Reveal ClpP Activators Disrupt Essential Mitochondrial Pathways in Triple-negative Breast Cancer

Abstract

ClpP activators ONC201 and related small molecules (TR compounds, Madera Therapeutics), have demonstrated significant anti-cancer potential in and studies, including clinical trials for refractory solid tumors. Though progress has been made in identifying specific phenotypic outcomes following ClpP activation, the exact mechanism by which ClpP activation leads to broad anti-cancer activity has yet to be fully elucidated. In this study, we utilized a multi-omics approach to identify the ClpP-dependent proteomic, transcriptomic, and metabolomic changes resulting from ONC201 or the TR compound TR-57 in triple-negative breast cancer cells. Applying mass spectrometry-based methods of proteomics and metabolomics, we identified ∼8,000 proteins and 588 metabolites, respectively. From proteomics data, 113 (ONC201) and 191 (TR-57) proteins significantly increased and 572 (ONC201) and 686 (TR-57) proteins significantly decreased in this study. Gene ontological (GO) analysis revealed strong similarities between proteins up- or downregulated by ONC201 or TR-57 treatment. Notably, this included the downregulation of many mitochondrial processes and proteins, including mitochondrial translation and mitochondrial matrix proteins. We performed a large-scale transcriptomic analysis of WT SUM159 cells, identifying ∼7,700 transcripts (746 and 1,100 significantly increasing, 795 and 1,013 significantly decreasing in ONC201 and TR-57 treated cells, respectively). Less than 21% of these genes were affected by these compounds in ClpP null cells. GO analysis of these data demonstrated additional similarity of response to ONC201 and TR-57, including a decrease in transcripts related to the mitochondrial inner membrane and matrix, cell cycle, and nucleus, and increases in other nuclear transcripts and transcripts related to metal-ion binding. Comparison of response between both compounds demonstrated a highly similar response in all -omics datasets. Analysis of metabolites also revealed significant similarities between ONC201 and TR-57 with increases in α-ketoglutarate and 2-hydroxyglutaric acid and decreased ureidosuccinic acid, L-ascorbic acid, L-serine, and cytidine observed following ClpP activation in TNBC cells. Further analysis identified multiple pathways that were specifically impacted by ClpP activation, including ATF4 activation, heme biosynthesis, and the citrulline/urea cycle. In summary the results of our studies demonstrate that ONC201 and TR-57 induce highly similar and broad effects against multiple mitochondrial processes required for cell proliferation.

Citing Articles

Targeted protein degradation in the mitochondrial matrix and its application to chemical control of mitochondrial morphology.

Yamada W, Tomoshige S, Nakamura S, Sato S, Ishikawa M Chem Sci. 2024; .

PMID: 39246353 PMC: 11376192. DOI: 10.1039/d4sc03145h.


TR-107, an Agonist of Caseinolytic Peptidase Proteolytic Subunit, Disrupts Mitochondrial Metabolism and Inhibits the Growth of Human Colorectal Cancer Cells.

Giarrizzo M, LaComb J, Patel H, Reddy R, Haley J, Graves L Mol Cancer Ther. 2024; 23(12):1761-1778.

PMID: 39233476 PMC: 11614700. DOI: 10.1158/1535-7163.MCT-24-0170.


TR-57 Treatment of SUM159 Cells Induces Mitochondrial Dysfunction without Affecting Membrane Potential.

Mishukov A, Mndlyan E, Berezhnov A, Kobyakova M, Lomovskaya Y, Holmuhamedov E Int J Mol Sci. 2024; 25(2).

PMID: 38256264 PMC: 10816083. DOI: 10.3390/ijms25021193.


Rational combination platform trial design for children and young adults with diffuse midline glioma: A report from PNOC.

Mueller S, Kline C, Franson A, van der Lugt J, Prados M, Waszak S Neuro Oncol. 2023; 26(Supplement_2):S125-S135.

PMID: 38124481 PMC: 11066905. DOI: 10.1093/neuonc/noad181.


A review of current therapeutics targeting the mitochondrial protease ClpP in diffuse midline glioma, H3 K27-altered.

Jackson E, Persson M, Fish C, Findlay I, Mueller S, Nazarian J Neuro Oncol. 2023; 26(Supplement_2):S136-S154.

PMID: 37589388 PMC: 11066926. DOI: 10.1093/neuonc/noad144.


References
1.
Qiu F, Chen Y, Liu X, Chu C, Shen L, Xu J . Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal. 2014; 7(319):ra31. PMC: 4229039. DOI: 10.1126/scisignal.2004761. View

2.
Kubota Y, Nomura K, Katoh Y, Yamashita R, Kaneko K, Furuyama K . Novel Mechanisms for Heme-dependent Degradation of ALAS1 Protein as a Component of Negative Feedback Regulation of Heme Biosynthesis. J Biol Chem. 2016; 291(39):20516-29. PMC: 5034046. DOI: 10.1074/jbc.M116.719161. View

3.
Arrillaga-Romany I, Chi A, Allen J, Oster W, Wen P, Batchelor T . A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma. Oncotarget. 2017; 8(45):79298-79304. PMC: 5668041. DOI: 10.18632/oncotarget.17837. View

4.
Anderson N, Haynes C . Folding the Mitochondrial UPR into the Integrated Stress Response. Trends Cell Biol. 2020; 30(6):428-439. PMC: 7230072. DOI: 10.1016/j.tcb.2020.03.001. View

5.
Kline C, Ralff M, Lulla A, Wagner J, Abbosh P, Dicker D . Role of Dopamine Receptors in the Anticancer Activity of ONC201. Neoplasia. 2017; 20(1):80-91. PMC: 5725157. DOI: 10.1016/j.neo.2017.10.002. View