» Articles » PMID: 37050876

An Implementation of the Martini Coarse-grained Force Field in OpenMM

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2023 Apr 13
PMID 37050876
Authors
Affiliations
Soon will be listed here.
Abstract

We describe a complete implementation of Martini 2 and Martini 3 in the OpenMM molecular dynamics software package. Martini is a widely used coarse-grained force field with applications in biomolecular simulation, materials, and broader areas of chemistry. It is implemented as a force field but makes extensive use of facilities unique to the GROMACS software, including virtual sites and bonded terms that are not commonly used in standard atomistic force fields. OpenMM is a flexible molecular dynamics package widely used for methods development and is competitive in speed on GPUs with other commonly used packages. OpenMM has facilities to easily implement new force field terms, external forces and fields, and other nonstandard features, which we use to implement all force field terms used in Martini 2 and Martini 3. This allows Martini simulations, starting with GROMACS topology files that are processed by custom scripts, with all the added flexibility of OpenMM. We provide a GitHub repository with test cases, compare accuracy and performance between GROMACS and OpenMM, and discuss the limitations of our implementation in terms of direct comparison with GROMACS. We describe a use case that implements the Modeling Employing Limited Data method to apply experimental constraints in a Martini simulation to efficiently determine the structure of a protein complex. We also discuss issues and a potential solution with the Martini 2 topology for cholesterol.

Citing Articles

Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery.

Paloncyova M, Valerio M, Dos Santos R, Kuhrova P, Srejber M, cechova P Mol Pharm. 2025; 22(3):1110-1141.

PMID: 39879096 PMC: 11881150. DOI: 10.1021/acs.molpharmaceut.4c00744.


Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence.

Son A, Park J, Kim W, Yoon Y, Lee S, Park Y Molecules. 2024; 29(19).

PMID: 39407556 PMC: 11477718. DOI: 10.3390/molecules29194626.


Martini 3 OliGo̅mers: A Scalable Approach for Multimers and Fibrils in GROMACS.

Korshunova K, Kiuru J, Liekkinen J, Enkavi G, Vattulainen I, Bruininks B J Chem Theory Comput. 2024; 20(17):7635-7645.

PMID: 39189419 PMC: 11391574. DOI: 10.1021/acs.jctc.4c00677.


[Research progress of coarse-grained molecular dynamics in drug carrier materials].

Zhang M, Gong M, Wang J, Chen Z, Zhou L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023; 40(4):799-804.

PMID: 37666772 PMC: 10477382. DOI: 10.7507/1001-5515.202303008.


Biophysics at the dawn of exascale computers.

Singharoy A, Perez A, Chipot C Biophys J. 2023; 122(14):E1-E2.

PMID: 37419113 PMC: 10398342. DOI: 10.1016/j.bpj.2023.06.017.

References
1.
Monticelli L, Kandasamy S, Periole X, Larson R, Tieleman D, Marrink S . The MARTINI Coarse-Grained Force Field: Extension to Proteins. J Chem Theory Comput. 2015; 4(5):819-34. DOI: 10.1021/ct700324x. View

2.
Eastman P, Pande V . CCMA: A Robust, Parallelizable Constraint Method for Molecular Simulations. J Chem Theory Comput. 2010; 6(2):434-437. PMC: 2885791. DOI: 10.1021/ct900463w. View

3.
Jewett A, Stelter D, Lambert J, Saladi S, Roscioni O, Ricci M . Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics. J Mol Biol. 2021; 433(11):166841. PMC: 8119336. DOI: 10.1016/j.jmb.2021.166841. View

4.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O . Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596(7873):583-589. PMC: 8371605. DOI: 10.1038/s41586-021-03819-2. View

5.
McGibbon R, Beauchamp K, Harrigan M, Klein C, Swails J, Hernandez C . MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys J. 2015; 109(8):1528-32. PMC: 4623899. DOI: 10.1016/j.bpj.2015.08.015. View