» Articles » PMID: 33086798

Computer Simulations of a Heterogeneous Membrane with Enhanced Sampling Techniques

Overview
Journal J Chem Phys
Specialties Biophysics
Chemistry
Date 2020 Oct 22
PMID 33086798
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Computational determination of the equilibrium state of heterogeneous phospholipid membranes is a significant challenge. We wish to explore the rich phase diagram of these multi-component systems. However, the diffusion and mixing times in membranes are long compared to typical time scales of computer simulations. Here, we evaluate the combination of the enhanced sampling techniques molecular dynamics with alchemical steps and Monte Carlo with molecular dynamics with a coarse-grained model of membranes (Martini) to reduce the number of steps and force evaluations that are needed to reach equilibrium. We illustrate a significant gain compared to straightforward molecular dynamics of the Martini model by factors between 3 and 10. The combination is a useful tool to enhance the study of phase separation and the formation of domains in biological membranes.

Citing Articles

Split Membrane: A New Model to Accelerate All-Atom MD Simulation of Phospholipid Bilayers.

Hazrati M, Sukenik L, Vacha R J Chem Inf Model. 2025; 65(2):845-856.

PMID: 39779296 PMC: 11776049. DOI: 10.1021/acs.jcim.4c01664.


Coarse-grained molecular simulation of extracellular vesicle squeezing for drug loading.

Islam K, Razizadeh M, Liu Y Phys Chem Chem Phys. 2023; 25(17):12308-12321.

PMID: 37082907 PMC: 10337604. DOI: 10.1039/d3cp00387f.


An implementation of the Martini coarse-grained force field in OpenMM.

MacCallum J, Hu S, Lenz S, Souza P, Corradi V, Tieleman D Biophys J. 2023; 122(14):2864-2870.

PMID: 37050876 PMC: 10398343. DOI: 10.1016/j.bpj.2023.04.007.


The Structures of Heterogeneous Membranes and Their Interactions with an Anticancer Peptide: A Molecular Dynamics Study.

Abbas G, Cardenas A, Elber R Life (Basel). 2022; 12(10).

PMID: 36294908 PMC: 9604715. DOI: 10.3390/life12101473.


Insights into lipid-protein interactions from computer simulations.

Tieleman D, Sejdiu B, Cino E, Smith P, Barreto-Ojeda E, Khan H Biophys Rev. 2022; 13(6):1019-1027.

PMID: 35047089 PMC: 8724345. DOI: 10.1007/s12551-021-00876-9.


References
1.
Brandani G, Schor M, MacPhee C, Grubmuller H, Zachariae U, Marenduzzo D . Quantifying disorder through conditional entropy: an application to fluid mixing. PLoS One. 2013; 8(6):e65617. PMC: 3677935. DOI: 10.1371/journal.pone.0065617. View

2.
Ingolfsson H, Melo M, van Eerden F, Arnarez C, Lopez C, Wassenaar T . Lipid organization of the plasma membrane. J Am Chem Soc. 2014; 136(41):14554-9. DOI: 10.1021/ja507832e. View

3.
Chen Y, Lagerholm B, Yang B, Jacobson K . Methods to measure the lateral diffusion of membrane lipids and proteins. Methods. 2006; 39(2):147-53. DOI: 10.1016/j.ymeth.2006.05.008. View

4.
Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E . Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26(16):1781-802. PMC: 2486339. DOI: 10.1002/jcc.20289. View

5.
Corradi V, Sejdiu B, Mesa-Galloso H, Abdizadeh H, Noskov S, Marrink S . Emerging Diversity in Lipid-Protein Interactions. Chem Rev. 2019; 119(9):5775-5848. PMC: 6509647. DOI: 10.1021/acs.chemrev.8b00451. View